留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳转化制取燃料及高值化学品研究进展

王瑞 许义榕 孟渴欣 唐伟 杨紫怡 王雯

王瑞, 许义榕, 孟渴欣, 唐伟, 杨紫怡, 王雯. 二氧化碳转化制取燃料及高值化学品研究进展[J]. 环境工程技术学报, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179
引用本文: 王瑞, 许义榕, 孟渴欣, 唐伟, 杨紫怡, 王雯. 二氧化碳转化制取燃料及高值化学品研究进展[J]. 环境工程技术学报, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179
WANG Rui, XU Yirong, MENG Kexin, TANG Wei, YANG Ziyi, WANG Wen. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179
Citation: WANG Rui, XU Yirong, MENG Kexin, TANG Wei, YANG Ziyi, WANG Wen. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179

二氧化碳转化制取燃料及高值化学品研究进展

doi: 10.12153/j.issn.1674-991X.20190179
详细信息
    作者简介:

    王瑞(1999—),女,研究方向为CO2的资源化利用,wangrui_buct@163.com

    通讯作者:

    王雯 E-mail: wangwen@mail.buct.edu.cn

  • 中图分类号: X131

Development of research on the conversion of carbon dioxide into fuel and high value-added products

More Information
    Corresponding author: WANG Wen E-mail: wangwen@mail.buct.edu.cn
  • 摘要: 二氧化碳(CO2)的捕集及转化技术可将CO2转化为清洁燃料和高值化学品,是未来缓解能源问题的有效途径之一。基于CO2的转化机理,结合近几年CO2转化技术的发展,重点介绍了催化转化、电化学还原、光化学转化、光电催化转化及生物转化技术制备CH3OH、HCOOH、C2H6O、CH3COOH等一系列高值化学品的研究进展;基于现有技术,通过进一步开发利用新型催化剂,培育优化具有CO2转化功能的微生物等手段,将CO2转化技术与多领域技术相结合发展,可为CO2转化技术的大规模工业化生产及实际应用打下坚实的基础。

     

  • [1] ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon:from CO2 to chemicals,materials,and fuels:technological use of CO2[J]. Chemical Reviews, 2014,114(3):1709-1742.
    doi: 10.1021/cr4002758 pmid: 24313306
    [2] 关毅. 2017年大气碳水平达80万年以来最高[J]. 自然杂志, 2018,40(5):54.
    [3] 王丽敏, 苏连江. 自然科学基础:无机化学卷[M]. 哈尔滨: 哈尔滨地图出版社, 2004: 315.
    [4] 张琪, 许武韬, 刘予宇, 等. 二氧化碳电化学还原概述[J]. 自然杂志, 2017,39(4):242-250.

    ZHANG Q, XU W T, LIU Y Y, et al. An overview of electrochemical reduction of carbon dioxide[J]. Chinese Journal of Nature, 2017,39(4):242-250.
    [5] METTE M, MIKKEL J, FREDERIK C K. The teraton challenge:a review of fixation and transformation of carbon dioxide[J]. Energy Environment Science, 2010,3(1):43-81.
    doi: 10.1039/B912904A
    [6] 王伟建, 郑小慧, 晁会霞, 等. 二氧化碳利用新途径的研究进展评述[J]. 钦州学院学报, 2018,173(5):22-28.

    WANG W J, ZHENG X H, CHAO H X, et al. Review on the research progress of new approaches to the utilization of carbon dioxide[J]. Journal of Qinzhou University, 2018,173(5):22-28.
    [7] BONURA G, CORDARO M, CANNILLA C, et al. Catalytic behaviour of a bifunctional system for the one step synjournal of DME by CO2 hydrogenation[J]. Catalysts, 2013,288:51-57.
    [8] GRACA I, GONZALEZ L V, BACARIZA M C, et al. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Applied Catalysts, 2014,147:101-110.
    [9] 邵怀启, 钟顺和, 郭俊宝. CO2氧化丙烷脱氢制丙烯用Pd-Cu/V2O5-SiO2催化剂的研究[J]. 催化学报, 2004,25(2):143-148.

    SHAO H Q, ZHONG S H, GUO J B. Pd-Cu/V2O5-SiO2 catalyst for propane oxidative dehydrogenation with CO2 to propylene[J]. Chinese Journal of Catalysis, 2004,25(2):143-148.
    [10] HUANG W, SUN W Z, LI F. Efficient synjournal of ethanol and acetic acid from methane and carbon dioxide with a continuous,stepwise reactor[J]. American Institute of Chemical Engineers Journal, 2010,56(5):1279-1284.
    [11] BARROS B S, MELO D M, LIBS S, et al. CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwave assisted self-combustion method[J]. Applied Catalysis A:General, 2010,378(1):69-75.
    doi: 10.1016/j.apcata.2010.02.001
    [12] BOOGAERTS I, NOLAN S P. Carboxylation of C—H bonds using N-het-erocyclic carbene gold(Ⅰ) complexes[J]. Journal of American Chemical Society, 2010,132(26):8858-8859.
    doi: 10.1021/ja103429q
    [13] ROSEN B A, SALEHI K A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334:643-644.
    doi: 10.1126/science.1209786 pmid: 21960532
    [14] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631.
    doi: 10.1039/c3cs60323g pmid: 24186433
    [15] AYD N R, DO A, HULVA Z, et al. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol[J]. Applied Catalysis B:Environmental, 2013,140/141:478.
    [16] LAWRENCE Y S L, WONG K Y. Electrocatalytic reduction of carbon dioxide[J]. Chemistry, 2017,3(5):717-718.
    [17] 蒋永, 苏敏, 张尧, 等. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013,19(5):833-837.
    doi: 10.3724/SP.J.1145.2013.00833

    JIANG Y, SU M, ZHANG Y, et al. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems[J]. Chinese Journal of Applied and Environmental Biology, 2013,19(5):833-837. doi: 10.3724/SP.J.1145.2013.00833
    [18] MARTINDALE B C M, COMPTON R G. Formic acid electro-synjournal from carbon dioxide in a room temperature ionic liquid[J]. Chemical Communications, 2012,48(52):6487.
    pmid: 22622393
    [19] 郑宁来. 二氧化碳一步转化为甲酸和乙醇[J]. 合成技术及应用, 2017(4):58.

    ZHENG N L. Content control of iso-phthalic acid during bottle PET chips producing[J]. Synthetic Technology & Application, 2017(4):58.
    [20] WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel[J].Nature Communictions, 2017(8):151.
    [21] AZIZ M A A, JALIL A A, TRIWABYONO S, et a1. CO2 methanation over heterogeneous catalysts:recent progress and future prospects[J]. Green Chemistry, 2015,17:2647-2663.
    doi: 10.1039/C5GC00119F
    [22] AGARWAL A S, ZHAI Y, HILL D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid:engineering and economic feasibility[J]. ChemSusChem, 2011,4(9):1301-1310.
    pmid: 21922681
    [23] 张现萍, 黄海燕, 靳红利. 水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015,34(12):4139-4144.
    doi: 10.16085/j.issn.1000-6613.2015.12.002

    ZHANG X P, HUANG H Y, JIN H L. Research progress of electrochemical reduction of CO2 in aqueous solution[J]. Chemical Progress, 2015,34(12):4139-4144. doi: 10.16085/j.issn.1000-6613.2015.12.002
    [24] ZHANG S J, HUO F. Angstrom science:exploring aggregates from a new viewpoint[J]. Green Energy & Environment, 2016(1):79-82.
    [25] TRAN N H, PHILIPPE S, GWENAELLE R, et al. Porous dendritic copper:an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017,8(1):742-747.
    pmid: 28451222
    [26] LINGAMPALLI S R, AYYUB M M, RAO C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748.
    doi: 10.1021/acsomega.7b00721 pmid: 31457612
    [27] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocata-lytie reduetion of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277:637-638.
    doi: 10.1038/277637a0
    [28] LONG R, LI Y, LIU Y, et al. Isolation of Cu atoms in Pd lattice:forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. Journal of the American Chemical Society, 2017,139(12):4486-4492.
    pmid: 28276680
    [29] WANG D F, TONG H, OUYANG S X, et al. Semiconductor-based artificial photosynjournal for conversion of carbon dioxide into hydrocarbon fuels[J]. Science, 2014(1):62-67.
    doi: 10.1007/BF02839314 pmid: 14663854
    [30] NEATU S, MACIA A J A, PATRICIA C, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. Journal of the American Chemical Society, 2014,136(45):15969-15976.
    doi: 10.1021/ja506433k pmid: 25329687
    [31] RAMSES S, ANNEMIE B. Plasma technology:a novel solution for CO2 conversation[J]. Chemical Society Reviews, 2017,46(19):5805-5863.
    doi: 10.1039/c6cs00066e pmid: 28825736
    [32] WANG C, SUN Z, ZHENG Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide[J]. Journal of Materials Chemistry A, 2019,136(45):847-862.
    [33] THOMPSON J F, CHEN B, KUBO M, et al. Artificial photosynjournal device development for CO2 photoelectrochemical conversion[J].MRS Advance, 2016(6):447-452.
    [34] ONG W J, PUTRI L K, TAN Y C, et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction:a combined experimental and first-principles DFT study[J]. Nano Research, 2017,10(5):1673-1696.
    doi: 10.1007/s12274-016-1391-4
    [35] SHEN Q, CHEN Z, HUANG X, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays[J]. Environmental Science & Technology, 2015,49:5828-5835.
    doi: 10.1021/acs.est.5b00066 pmid: 25844931
    [36] IRTEM E, HERNANDEZ A. A photoelectrochemical flow cell design for the efficient CO2 conversion to fuels[J]. Electrochimica Acta, 2017,240:225-230.
    doi: 10.1016/j.electacta.2017.04.072
    [37] JIANG M, WU H, LI Z, et al. Highly selective photoelectrochemical conversion of carbon dioxide to formic acid[J]. ACS Sustainable Chemistry & Engineering, 2018(1):82-87.
    [38] LI F, ZHANG L, TONG J, et al. Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor[J]. Nano Energy, 2016,27:320-329.
    doi: 10.1016/j.nanoen.2016.06.056
    [39] YUAN J, WANG X, GU C, et al. Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode[J]. RSC Advance, 2017,7:24933-24939.
    doi: 10.1039/C7RA03347H
    [40] YANG Z, WANG H, SONG W, et al. One dimensional SnO2 NRs/Fe2O3 NTs with dual synergistic effects for photoelectrocatalytic reduction CO2 into methanol[J]. Journal of Colloid and Interface Science, 2017,486:232-240.
    doi: 10.1016/j.jcis.2016.09.055 pmid: 27716463
    [41] KAYKOBADR K M, RUEY O H, HAMIDAH A, et al. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 2018,39(43):18185-18193.
    [42] YUAN J, XIAO B, HAO C. Photoelectrochemical reduction of carbon dioxide to ethanol at Cu2O foam cathode[J]. International Journal of Electrochemical Science, 2017,12:8288-8294.
    [43] AMPELLI C, PASSALACQUA R, GENOVESE C, et al. A novel photo-electrochemical approach for the chemical recycling of carbon dioxide to fuels[J]. Chemical Engineering Transactions, 2011,25:683-688.
    doi: 10.3303/CET1125114
    [44] MARTIN M R, FORNERO J J, REBECCA S, et al. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2[J]. International Microbiological Journal, 2013(7):157529.
    [45] BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors atmesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015,49(20):12585-12593.
    doi: 10.1021/acs.est.5b03451 pmid: 26390125
    [46] DEMLER M, WEUSTER B D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii[J]. Biotechnology & Bioengineering, 2011,108(2):470-474.
    doi: 10.1002/bit.22935 pmid: 20830677
    [47] HU P, RISMANIYAZDI H, TEPHANOPOULOS G. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica[J]. AIChE Journal, 2013,59(9):3176-3183.
    doi: 10.1002/aic.14127
    [48] FERNANDEZ N A, ABUBACKAR H N, VEIGA M C, et al. Production of chemicals from C1 gases (CO,CO2) by Clostridium carboxidivorans[J]. World Journal of Microbiology and Biotechnology, 2017,33(3):43.
    doi: 10.1007/s11274-016-2188-z pmid: 28160118
    [49] TANNER R S, MILLER L M, YANG D C. Clostridium ljungdahlii sp.nov.,an acetogenic species in clostridial rRNA homology group Ⅰ[J]. International Journal of Systematic Bacteriology, 1993,43(2):232-236.
    doi: 10.1099/00207713-43-2-232 pmid: 7684239
    [50] GUNNARSSON I B, KARAKASHEV D, ANGELIDAKI I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z[J]. Industrial Crops & Products, 2014,62:125-129.
    [51] COK B, TSIROPOULOS I, ROES A L, et al. Succinic acid production derived from carbohydrates:an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels Bioproducts & Biorefining, 2014,8(1):16-29.
    [52] MUZUMDAR A V, PANGARKAR V G. Reduction of maleic acid to succinic acid on titanium cathode[J]. Organic Process Research & Development, 2004,8(4):685-688.
    [53] GUNNARSSON I B, ALVARADO M M, ANGELIDAKI I. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production[J]. Environmental Science & Technology, 2014,48(20):12464.
    doi: 10.1021/es504000h pmid: 25275929
    [54] 陆小青. 藻类生物燃料的研究进展[J]. 城市道桥与防洪, 2012(6):393-398.
    [55] 嵇磊, 张利雄, 姚志龙, 等. 利用藻类生物质制备生物燃料研究进展[J]. 石油学报(石油加工), 2007,23(6):1-5.

    JI L, ZHANG L X, YAO Z L, et al. Review on the progress of producing bio-fuel from microalgae[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2007,23(6):1-5.
    [56] 王键, 杨剑, 王中原, 等. 全球碳捕集与封存发展现状及未来趋势[J]. 环境工程, 2012,30(4):118-120.

    WANG J, YANG J, WANG Z Y, et al. The present status and future trends of global carbon capture and storage[J]. Environmental Engineering, 2012,30(4):118-120.
  • 加载中
计量
  • 文章访问数:  538
  • HTML全文浏览量:  131
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回