留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能见度参数化方案优化及在北京地区的应用评估

王继康 谢超 张天航 张碧辉 张恒德 饶晓琴

王继康, 谢超, 张天航, 张碧辉, 张恒德, 饶晓琴. 能见度参数化方案优化及在北京地区的应用评估[J]. 环境工程技术学报, 2020, 10(3): 330-337. doi: 10.12153/j.issn.1674-991X.20190186
引用本文: 王继康, 谢超, 张天航, 张碧辉, 张恒德, 饶晓琴. 能见度参数化方案优化及在北京地区的应用评估[J]. 环境工程技术学报, 2020, 10(3): 330-337. doi: 10.12153/j.issn.1674-991X.20190186
WANG Jikang, XIE Chao, ZHANG Tianhang, ZHANG Bihui, ZHANG Hengde, RAO Xiaoqin. Modification of visibility parameterization scheme and its application evaluation in Beijing[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 330-337. doi: 10.12153/j.issn.1674-991X.20190186
Citation: WANG Jikang, XIE Chao, ZHANG Tianhang, ZHANG Bihui, ZHANG Hengde, RAO Xiaoqin. Modification of visibility parameterization scheme and its application evaluation in Beijing[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 330-337. doi: 10.12153/j.issn.1674-991X.20190186

能见度参数化方案优化及在北京地区的应用评估

doi: 10.12153/j.issn.1674-991X.20190186
详细信息
    作者简介:

    王继康(1990—),男,硕士,主要研究方向为空气值模拟与预报,wjk_1990@126.com

    通讯作者:

    张天航 E-mail: sharp@mail.iap.ac.cn

  • 中图分类号: X16

Modification of visibility parameterization scheme and its application evaluation in Beijing

More Information
    Corresponding author: ZHANG Tianhang E-mail: sharp@mail.iap.ac.cn
  • 摘要: 为了利用订正后PM2.5浓度预报结果提高能见度预报准确性,根据不同相对湿度下能见度与PM2.5浓度的相关关系,提出了一种改进的能见度参数化方案(S1)。为了评估该方案的预报性能,利用基于最优多模式集成方法预报的PM2.5浓度对北京市2019-02-18—03-05污染过程的能见度进行预报,并对比评估了利用美国大气能见度观测项目建立的经验参数化方案(IMPROVE,S2)和基于神经网络(S3)的能见度预报效果。结果表明:基于多模式最优集成方法对PM2.5浓度和WRF4.0模式对相对湿度的预报效果均较好,相关系数达0.90。3种方案都对选取时段能见度的变化趋势有较好的预报,其中S1方案相关系数最高(0.85),均方根误差最小,预报效果最好;S1方案较S2方案平均偏差降低3.6 km;S1方案较S3方案预报效果的提升主要是在能见度大于10 km的范围内。PM2.5浓度预报效果对能见度预报效果的影响高于相对湿度,但在相对湿度大于70%的情况下,其预报效果对能见度预报效果的影响更大。

     

  • [1] 陈静, 赵春生 . 大气低能见度的影响因子分析及计算方法综述[J]. 气象科技进展, 2014(4):44-51.

    CHEN J, ZHAO C S . A review of influence factors and calculation of atmospheric low visibility[J]. Advances in Meteorological Science and Technology, 2014(4):44-51.
    [2] CHAI F H, GAO J, CHEN Z , et al. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China[J]. Journal of Environmental Sciences:China, 2014,26(1):75-82.
    doi: 10.1016/s1001-0742(13)60383-6 pmid: 24649693
    [3] HAN R, WANG S, SHEN W , et al. Spatial and temporal variation of haze in China from 1961 to 2012[J]. Journal of Environmental Sciences:China, 2016,46(8):134-146.
    doi: 10.1016/j.jes.2015.12.033 pmid: 27521945
    [4] CHEN H, WANG H . Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. Journal of Geophysical Research, 2015,120(12):5895-5909.
    [5] CHE H, ZHANG X, LI Y , et al. Horizontal visibility trends in China 1981-2005[J]. Geophysical Research Letters, 2007,34(24):L24706.
    [6] WU J, FU C, ZHANG L , et al. Trends of visibility on sunny days in China in the recent 50 years[J]. Atmospheric Environment, 2012,55(3):339-346.
    [7] 吴兑, 吴晓京, 李菲 , 等. 1951—2005年中国大陆霾的时空变化[J]. 气象学报, 2010,68(5):680-688.

    WU D, WU X J, LI F , et al. Temporal and spatial variation of haze during 1951-2005 in Chinese mainland[J]. Acta Meteorologica Sinica, 2010,68(5):680-688.
    [8] 张恒德, 咸云浩, 谢永华 , 等. 基于时间序列分析和卡尔曼滤波的霾预报技术[J]. 计算机应用, 2017(11):279-284.

    ZHANG H D, XIAN Y H, XIE Y H , et al. Haze forecast based on time series analysis and Kalman filtering[J]. Journal of Computer Applications, 2017(11):279-284.
    [9] 张自银, 赵秀娟, 熊亚军 , 等. 基于动态统计预报方法的京津冀雾霾中期预报试验[J]. 应用气象学报, 2018,29(1):57-69.

    ZHANG Z Y, ZHAO X J, XIONG Y J , et al. The fog/haze medium-range forecast experiments based on dynamic statistic method[J]. Journal of Applied Meteorological Science, 2018,29(1):57-69.
    [10] XIE C, MA X . A.pngicial intelligence research on visibility forecast[C]// International Conference on Signal and Information Processing:Networking and Computers.Singapore:Springer, 2019: 455-461.
    [11] 胡海川, 张恒德, 朱彬 , 等. 神经网络方法在环渤海能见度预报中的应用分析[J]. 气象科学, 2018,38(6):95-102.

    HU H C, ZHANG H D, ZHU B , et al. Application analysis of neural network method in visibility forecast of coastal cities around Bohai Sea[J]. Journal of the Meteorological Sciences, 2018,38(6):95-102.
    [12] PITCHFORD M, MALM W, SCHICHTEL B , et al. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. Journal of the Air & Waste Management Association, 2007,57(11):1326-1336.
    doi: 10.3155/1047-3289.57.11.1326 pmid: 18069456
    [13] 邓涛, 邓雪娇, 吴兑 , 等. 珠三角灰霾数值预报模式与业务运行评估[J]. 气象科技进展, 2012,2(6):38-44.

    DENG T, DENG X J, WU D , et al. Study on numerical forecast model of haze over Pearl River Delta Region and routine business assessment[J]. Advances in Meteorological Science and Technology, 2012,2(6):38-44.
    [14] 赵秀娟, 徐敬, 张自银 , 等. 北京区域环境气象数值预报系统及PM2.5预报检验[J]. 应用气象学报, 2016,27(2):160-172.

    ZHAO X J, XU J, ZHANG Z Y , et al. Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration[J]. Journal of Applied Meteorological Science, 2016,27(2):160-172.
    [15] CHEN J, ZHAO C S, MA N , et al. A parameterization of low visibilities for hazy days in the North China Plain[J]. Atmospheric Chemistry and Physics, 2011,12(11):4935-4950.
    [16] 胡俊, 赵天良, 张泽锋 , 等. 霾污染环境大气能见度参数化方案的改进[J]. 环境科学研究, 2017,30(11):22-30.

    HU J, ZHAO T L, ZHANG Z F , et al. Upgradeding atmospheric visibility parameterization scheme for haze pollution environment[J]. Research of Environmental Sciences, 2017,30(11):22-30.
    [17] 赵秀娟, 李梓铭, 徐敬 . 霾天能见度参数化方案改进及预报效果评估[J]. 环境科学, 2019,40(4):170-178.

    ZHAO X J, LI Z M, XU J , et al. Modification and performance tests of visibility parameterizations for haze days[J]. Environmental Science, 2019,40(4):170-178.
    [18] 吕梦瑶, 程兴宏, 张恒德 , 等. 基于自适应偏最小二乘回归法的CUACE模式污染物预报偏差订正改进方法研究[J]. 环境科学学报, 2018,38(7):2735-2745.

    LÜ M Y, CHENG X H, ZHANG H D , et al. Improving the correction method of air pollutant forecasts from the CUACE model based on the adapting partial least square regression technique[J]. Acta Scientiae Circumstantiae, 2018,38(7):2735-2745.
    [19] ZHOU Q, JIANG H, WANG J , et al. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network[J]. Science of the Total Environment, 2014,496:264-274.
    doi: 10.1016/j.scitotenv.2014.07.051 pmid: 25089688
    [20] LIU D J, LI L . Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2.5 concentration in Guangzhou,China[J]. International Journal of Environmental Research and Public Health, 2015,12(6):7085-7099.
    doi: 10.3390/ijerph120607085 pmid: 26110332
    [21] 张伟, 王自发, 安俊岭 , 等. 利用BP神经网络提高奥运会空气质量实时预报系统预报效果[J]. 气候与环境研究, 2010,15(5):595-601.

    ZHANG W, WANG Z F, AN J L , et al. Update the ensemble air quality modeling system with BP model during Beijing Olympics[J]. Climatic and Environmental Research, 2010,15(5):595-601.
    [22] 张天航, 王继康, 张恒德 , 等. 一种最优多模式集成方法在我国重污染区域PM2.5浓度预报中的应用[J]. 环境工程技术学报, 2019,9(5):520-530.

    ZHANG T H, WANG J K, ZHANG H D , et al. Applciation of a best multi-model ensemble method in PM2.5 forecast in heavily polluted regions of Chnia[J]. Journal of Environmental Engineering Technology, 2019,9(5):520-530.
    [23] 王继康, 张恒德, 桂海林 , 等. 能见度与PM2.5浓度关系及其分布特征[J]. 环境科学, 2019,40(7):2985-2993.

    WANG J K, ZHANG H D, GUI H L , et al. The relationship between atmospheric visibility and PM2.5 concertation and its distribution[J]. Environmental Science, 2019,40(7):2985-2993.
    [24] 张恒德, 张庭玉, 李涛 , 等. 基于BP神经网络的污染物浓度多模式集成预报[J]. 中国环境科学, 2018,38(4):1243-1256.

    ZHANG H D, ZHANG T Y, LI T , et al. Forecast of air quality pollutants’ concentrations based on BP neural network multi-model ensemble method[J]. China Environmental Science, 2018,38(4):1243-1256.
    [25] GILLIAM R C, HOGREFE C, GODOWITCH J M , et al. Impact of inherent meteorology uncertainty on air quality model predictions[J]. Journal of Geophysical Research, 2015,120(23):12259-12280
    [26] Ramboll ENVIRON. User’s guide to the comprehensive air quality model with extensions(CAMx):Version 6.2[EB/OL]. (2015-03-15)[2019-10-12]. http://www.camx.com.
    [27] 王继康, 张碧辉, 张恒德 , 等. 边界层方案对华北一次污染过程模拟的影响[J]. 中国环境科学, 2019,39(1):63-73.

    WANG J K, ZHANG B H, ZHANG H D , et al. The impacts of planetary boundary layer schemes on pollutants simulations during an air pollution episode over BTH region[J]. China Environmental Science, 2019,39(1):63-73.
    [28] 吴彬贵, 张建春, 李英华 , 等. 天津港秋冬季低能见度数值释用预报研究[J]. 气象, 2017,43(7):863-871.

    WU B G, ZHANG J C, LI Y H , et al. Research on numerical interpretative forecast for low-visibility at Tianjin Port in autumn and winter[J]. Meteorological Monthly, 2017,43(7):863-871.
    [29] LI X, JIANG L, BAI Y , et al. Wintertime aerosol chemistry in Beijing during haze period:significant contribution from secondary formation and biomass burning emission[J]. Atmospheric Research, 2019,218:25-33
    [30] GAO M, CARMICHAEL G R, WANG Y , et al. Improving simulations of sulfate aerosols during winter haze over Northern China:the impacts of heterogeneous oxidation by NO2[J]. Frontiers of Environmental Science & Engineering in China, 2016,10(5):16.
  • 加载中
计量
  • 文章访问数:  500
  • HTML全文浏览量:  135
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回