Modification of visibility parameterization scheme and its application evaluation in Beijing
-
摘要: 为了利用订正后PM2.5浓度预报结果提高能见度预报准确性,根据不同相对湿度下能见度与PM2.5浓度的相关关系,提出了一种改进的能见度参数化方案(S1)。为了评估该方案的预报性能,利用基于最优多模式集成方法预报的PM2.5浓度对北京市2019-02-18—03-05污染过程的能见度进行预报,并对比评估了利用美国大气能见度观测项目建立的经验参数化方案(IMPROVE,S2)和基于神经网络(S3)的能见度预报效果。结果表明:基于多模式最优集成方法对PM2.5浓度和WRF4.0模式对相对湿度的预报效果均较好,相关系数达0.90。3种方案都对选取时段能见度的变化趋势有较好的预报,其中S1方案相关系数最高(0.85),均方根误差最小,预报效果最好;S1方案较S2方案平均偏差降低3.6 km;S1方案较S3方案预报效果的提升主要是在能见度大于10 km的范围内。PM2.5浓度预报效果对能见度预报效果的影响高于相对湿度,但在相对湿度大于70%的情况下,其预报效果对能见度预报效果的影响更大。Abstract: An modified visibility parameterization scheme (S1) was proposed based on the correlation between visibility and PM2.5 concentrations under different relative humidity, so as to improve the accuracy of visibility forecast by using the revised PM2.5 concentrations forecast results. In order to evaluate the forecast performance of the scheme, the forecasted PM2.5 concentrations based on a multi-model optimal integration method were used to forecast the visibility during the pollution process in Beijing for the period from February 18th to March 5th 2019. The scheme from Interagency Monitoring of Projected Visual Environments (IMPROVE, S2) and the a.pngicial neural network (S3) were also used to forecast the visibility in this period. The forecast results were compared and evaluated. The results showed that the forecast results of PM2.5 concentration based on the multi-model optimal integration method and relative humidity based on WRF4.0 mode were good, and their correlation coefficient reached 0.90. All of the three schemes had good forecast for the trend of visibility in the selected period. S1 hold the best performances with the highest correlation coefficient (0.85) and lowest root mean square error (RMSE). The average deviation of homogenization in S1 was 3.6 km lower than that in S2. S1 performed better than S3 in range of the visibility greater than 10 km. The effect of PM2.5 concentrations forecast on visibility forecast was higher than that of relative humidity forecast. The effect of relative humidity forecast could be more significant when the relative humidity exceeded 70%.
-
Key words:
- visibility /
- parameterization scheme /
- revised PM2.5 forecast /
- forecast evaluation
-
[1] 陈静, 赵春生 . 大气低能见度的影响因子分析及计算方法综述[J]. 气象科技进展, 2014(4):44-51.CHEN J, ZHAO C S . A review of influence factors and calculation of atmospheric low visibility[J]. Advances in Meteorological Science and Technology, 2014(4):44-51. [2] CHAI F H, GAO J, CHEN Z , et al. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China[J]. Journal of Environmental Sciences:China, 2014,26(1):75-82.
doi: 10.1016/s1001-0742(13)60383-6 pmid: 24649693[3] HAN R, WANG S, SHEN W , et al. Spatial and temporal variation of haze in China from 1961 to 2012[J]. Journal of Environmental Sciences:China, 2016,46(8):134-146.
doi: 10.1016/j.jes.2015.12.033 pmid: 27521945[4] CHEN H, WANG H . Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. Journal of Geophysical Research, 2015,120(12):5895-5909. [5] CHE H, ZHANG X, LI Y , et al. Horizontal visibility trends in China 1981-2005[J]. Geophysical Research Letters, 2007,34(24):L24706. [6] WU J, FU C, ZHANG L , et al. Trends of visibility on sunny days in China in the recent 50 years[J]. Atmospheric Environment, 2012,55(3):339-346. [7] 吴兑, 吴晓京, 李菲 , 等. 1951—2005年中国大陆霾的时空变化[J]. 气象学报, 2010,68(5):680-688.WU D, WU X J, LI F , et al. Temporal and spatial variation of haze during 1951-2005 in Chinese mainland[J]. Acta Meteorologica Sinica, 2010,68(5):680-688. [8] 张恒德, 咸云浩, 谢永华 , 等. 基于时间序列分析和卡尔曼滤波的霾预报技术[J]. 计算机应用, 2017(11):279-284.ZHANG H D, XIAN Y H, XIE Y H , et al. Haze forecast based on time series analysis and Kalman filtering[J]. Journal of Computer Applications, 2017(11):279-284. [9] 张自银, 赵秀娟, 熊亚军 , 等. 基于动态统计预报方法的京津冀雾霾中期预报试验[J]. 应用气象学报, 2018,29(1):57-69.ZHANG Z Y, ZHAO X J, XIONG Y J , et al. The fog/haze medium-range forecast experiments based on dynamic statistic method[J]. Journal of Applied Meteorological Science, 2018,29(1):57-69. [10] XIE C, MA X . A.pngicial intelligence research on visibility forecast[C]// International Conference on Signal and Information Processing:Networking and Computers.Singapore:Springer, 2019: 455-461. [11] 胡海川, 张恒德, 朱彬 , 等. 神经网络方法在环渤海能见度预报中的应用分析[J]. 气象科学, 2018,38(6):95-102.HU H C, ZHANG H D, ZHU B , et al. Application analysis of neural network method in visibility forecast of coastal cities around Bohai Sea[J]. Journal of the Meteorological Sciences, 2018,38(6):95-102. [12] PITCHFORD M, MALM W, SCHICHTEL B , et al. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. Journal of the Air & Waste Management Association, 2007,57(11):1326-1336.
doi: 10.3155/1047-3289.57.11.1326 pmid: 18069456[13] 邓涛, 邓雪娇, 吴兑 , 等. 珠三角灰霾数值预报模式与业务运行评估[J]. 气象科技进展, 2012,2(6):38-44.DENG T, DENG X J, WU D , et al. Study on numerical forecast model of haze over Pearl River Delta Region and routine business assessment[J]. Advances in Meteorological Science and Technology, 2012,2(6):38-44. [14] 赵秀娟, 徐敬, 张自银 , 等. 北京区域环境气象数值预报系统及PM2.5预报检验[J]. 应用气象学报, 2016,27(2):160-172.ZHAO X J, XU J, ZHANG Z Y , et al. Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration[J]. Journal of Applied Meteorological Science, 2016,27(2):160-172. [15] CHEN J, ZHAO C S, MA N , et al. A parameterization of low visibilities for hazy days in the North China Plain[J]. Atmospheric Chemistry and Physics, 2011,12(11):4935-4950. [16] 胡俊, 赵天良, 张泽锋 , 等. 霾污染环境大气能见度参数化方案的改进[J]. 环境科学研究, 2017,30(11):22-30.HU J, ZHAO T L, ZHANG Z F , et al. Upgradeding atmospheric visibility parameterization scheme for haze pollution environment[J]. Research of Environmental Sciences, 2017,30(11):22-30. [17] 赵秀娟, 李梓铭, 徐敬 . 霾天能见度参数化方案改进及预报效果评估[J]. 环境科学, 2019,40(4):170-178.ZHAO X J, LI Z M, XU J , et al. Modification and performance tests of visibility parameterizations for haze days[J]. Environmental Science, 2019,40(4):170-178. [18] 吕梦瑶, 程兴宏, 张恒德 , 等. 基于自适应偏最小二乘回归法的CUACE模式污染物预报偏差订正改进方法研究[J]. 环境科学学报, 2018,38(7):2735-2745.LÜ M Y, CHENG X H, ZHANG H D , et al. Improving the correction method of air pollutant forecasts from the CUACE model based on the adapting partial least square regression technique[J]. Acta Scientiae Circumstantiae, 2018,38(7):2735-2745. [19] ZHOU Q, JIANG H, WANG J , et al. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network[J]. Science of the Total Environment, 2014,496:264-274.
doi: 10.1016/j.scitotenv.2014.07.051 pmid: 25089688[20] LIU D J, LI L . Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2.5 concentration in Guangzhou,China[J]. International Journal of Environmental Research and Public Health, 2015,12(6):7085-7099.
doi: 10.3390/ijerph120607085 pmid: 26110332[21] 张伟, 王自发, 安俊岭 , 等. 利用BP神经网络提高奥运会空气质量实时预报系统预报效果[J]. 气候与环境研究, 2010,15(5):595-601.ZHANG W, WANG Z F, AN J L , et al. Update the ensemble air quality modeling system with BP model during Beijing Olympics[J]. Climatic and Environmental Research, 2010,15(5):595-601. [22] 张天航, 王继康, 张恒德 , 等. 一种最优多模式集成方法在我国重污染区域PM2.5浓度预报中的应用[J]. 环境工程技术学报, 2019,9(5):520-530.ZHANG T H, WANG J K, ZHANG H D , et al. Applciation of a best multi-model ensemble method in PM2.5 forecast in heavily polluted regions of Chnia[J]. Journal of Environmental Engineering Technology, 2019,9(5):520-530. [23] 王继康, 张恒德, 桂海林 , 等. 能见度与PM2.5浓度关系及其分布特征[J]. 环境科学, 2019,40(7):2985-2993.WANG J K, ZHANG H D, GUI H L , et al. The relationship between atmospheric visibility and PM2.5 concertation and its distribution[J]. Environmental Science, 2019,40(7):2985-2993. [24] 张恒德, 张庭玉, 李涛 , 等. 基于BP神经网络的污染物浓度多模式集成预报[J]. 中国环境科学, 2018,38(4):1243-1256.ZHANG H D, ZHANG T Y, LI T , et al. Forecast of air quality pollutants’ concentrations based on BP neural network multi-model ensemble method[J]. China Environmental Science, 2018,38(4):1243-1256. [25] GILLIAM R C, HOGREFE C, GODOWITCH J M , et al. Impact of inherent meteorology uncertainty on air quality model predictions[J]. Journal of Geophysical Research, 2015,120(23):12259-12280 [26] Ramboll ENVIRON. User’s guide to the comprehensive air quality model with extensions(CAMx):Version 6.2[EB/OL]. (2015-03-15)[2019-10-12]. http://www.camx.com. [27] 王继康, 张碧辉, 张恒德 , 等. 边界层方案对华北一次污染过程模拟的影响[J]. 中国环境科学, 2019,39(1):63-73.WANG J K, ZHANG B H, ZHANG H D , et al. The impacts of planetary boundary layer schemes on pollutants simulations during an air pollution episode over BTH region[J]. China Environmental Science, 2019,39(1):63-73. [28] 吴彬贵, 张建春, 李英华 , 等. 天津港秋冬季低能见度数值释用预报研究[J]. 气象, 2017,43(7):863-871.WU B G, ZHANG J C, LI Y H , et al. Research on numerical interpretative forecast for low-visibility at Tianjin Port in autumn and winter[J]. Meteorological Monthly, 2017,43(7):863-871. [29] LI X, JIANG L, BAI Y , et al. Wintertime aerosol chemistry in Beijing during haze period:significant contribution from secondary formation and biomass burning emission[J]. Atmospheric Research, 2019,218:25-33 [30] GAO M, CARMICHAEL G R, WANG Y , et al. Improving simulations of sulfate aerosols during winter haze over Northern China:the impacts of heterogeneous oxidation by NO2[J]. Frontiers of Environmental Science & Engineering in China, 2016,10(5):16.
点击查看大图
计量
- 文章访问数: 500
- HTML全文浏览量: 135
- PDF下载量: 129
- 被引次数: 0