Research on limits of heavy metal contents in ceramsite blocks based on risk assessment
-
摘要: 为控制用于建材的陶粒中重金属的环境风险,采集利用电镀污泥烧制的陶粒制取的陶粒砌块样品,分析其重金属含量、浸出毒性浓度和有效量,识别其特征重金属及潜在风险,建立陶粒砌块用于墙体材料和路面铺设2种暴露场景时,基于风险评估方法的重金属含量限值制订方法,并采用该方法计算了陶粒砌块中重金属含量限值。结果表明:陶粒砌块中特征重金属为Cr、Ni、Cu、Zn和Ba,其浸出(释放)浓度分别为30.0~48.6、37.2~132.0、28.7~50.6、12.9~169.0和609~674 μg/L,低于GB 5085.3—2007《危险废物鉴别标准 浸出毒性鉴别》中的标准限值,利用电镀污泥制取陶粒砌块是可行的资源无害化处理方法;废陶粒砌块中Cr、Ni、Cu、Zn、Ba浸出(释放)浓度限值分别为1.50、0.20、10.00、10.00和7.00 mg/L,含量限值分别为186 198、3 313、8 740、36 703和3 272 mg/kg。提出的重金属含量限值制订方法可为陶粒中重金属环境风险控制提供依据,为建材中重金属含量限值制订提供参考。Abstract: In order to control the environmental risk of heavy metals in the ceramsite used for building materials, samples of ceramsite blocks prepared by using ceramsite fired by electroplating sludge were collected, and the content of heavy metals, the toxic concentration of leaching and the effective amount of heavy metals in ceramsite blocks were analyzed. The characteristic heavy metals and their potential risks were ide.pngied, and a method based on the risk assessment method for determining the limits of heavy metals was established when ceramsite blocks were used. The method was used to calculate the limits of heavy metals in ceramsite blocks in two kinds of exposure scenarios, i.e. wall materials and pavement laying. The results showed that the characteristic heavy metals in the ceramsite blocks were Cr, Ni, Cu, Zn and Ba. The leaching (releasing) toxicity concentrations of these five heavy metals was 30.0-48.6, 37.2-132.0, 28.7-50.6, 12.9-169.0 and 609-674 μg/L, respectively. These values were lower than the standard limits in Ide.pngication Standard for Hazardous Wastes-Ide.pngication for Extraction Toxicity (GB 5085.3-2007). Therefore, the use of electroplating sludge to make ceramsite blocks was a feasible resource harmless treatment method. The maximum leaching(releasing) concentration of Cr, Ni, Cu, Zn, Ba from abandoned ceramsite blocks was 1.50, 0.20, 10.00, 10.00 and 7.00 mg/L, respectively. The limit content of Cr, Ni, Cu, Zn, Ba in ceramsite blocks was of 186 198, 3 313, 8 740, 36 703 and 3 272 mg/kg, respectively. The proposed method could provide basis for the environmental risk control of heavy metals in ceramsite and provide a reference for the method of formulating the content limits of heavy metals in building materials.
-
Key words:
- ceramsite block /
- wall material /
- pavement laying /
- heavy metal /
- limit of content
-
[1] YUE Y, ZHANG J, SUN F , et al. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash[J]. Journal of Environmental Management, 2019,232:226-235.
doi: 10.1016/j.jenvman.2018.11.053 pmid: 30476684[2] 李英 . 电镀污泥中有价金属提取工艺研究[D]. 赣州:江西理工大学, 2013. [3] 俞绍贺 . 电镀污泥中重金属的回收及固化处置[J]. 资源再生, 2019(6):44-45.YU S H . Recovery and solidification of heavy metals in electroplating sludge[J]. Resource Recycling, 2019(6):44-45. [4] 张晶, 杨玉飞, 杨金忠 , 等. 造粒飞灰沥青混凝土路面利用的地下水环境风险评估[J]. 环境污染与防治, 2019,41(1):89-94.ZHANG J, YANG Y F, YANG J Z , et al. Environmental risk assessment of groundwater of granulated fly ash utilization on asphalt pavement[J]. Environmental Pollution & Control, 2019,41(1):89-94. [5] 张霞, 黄启飞, 王琪 , 等. 废物水泥窑共处置产品中重金属释放模型研究:混凝土路面场景[J]. 环境污染与防治, 2010,32(7):5-9.ZHANG X, HUANG Q F, WANG Q , et al. Model of heavy metals releasing in cement produced from co-processing waste in cement kiln based on concrete pavement scenario[J]. Environmental Pollution & Control, 2010,32(7):5-9. [6] 杨玉飞, 黄启飞, 杨昱 , 等. 废物水泥窑共处置产品中重金属释放潜能表征研究[J]. 环境科学研究, 2008,21(6):47-51.YANG Y F, HUANG Q F, YANG Y , et al. Characterizati on of the release potentiaI of heavy metals in cement products from co-processing waste in cement kilns[J]. Research of Environmental Sciences, 2008,21(6):47-51. [7] XU G R, ZOU J L, LI G B . Stabilization of heavy metals in sludge ceramsite[J]. Water Research, 2010,44(9):2930-2938.
doi: 10.1016/j.watres.2010.02.014 pmid: 20219229[8] LI J, YU G, XIE S , et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Science of the Total Environment, 2018,628:131-140.
doi: 10.1016/j.scitotenv.2018.02.036 pmid: 29428855[9] 王兴润, 金宜英, 聂永丰 , 等. 污泥制陶粒技术可行性分析与烧结机理研究[J]. 环境科学研究, 2008,21(6):80-84.WANG X R, JIN Y Y, NIE Y F , et al. Sintering characteristics and application research of sewage sludge in producing lightweight aggregate[J]. Research of Environmental Sciences, 2008,21(6):80-84. [10] 严捍东 . 电镀污泥与海滩淤泥复合烧制陶粒重金属固化效果的试验分析[J]. 化工进展, 2005(4):383-386.YAN H D . Experimental analysis on solidified effect of heavy metal in ceramsite calcined by composite materials of electroplating sludge and seabeach sludge[J]. Chemical Industry and Engineering Progress, 2005(4):383-386. [11] NIE L, ZHANG Y . Study on the application of lightweight aggregate ceramsite concrete in building[J]. Applied Mechanics and Materials, 2011, 71/72/73/74/75/76/77/78:573-576. [12] LU X Y, LIU H M . Performance of the whole sludge ceramsite foam concrete block wall and its application[J]. Building Energy Efficiency, 2012,40(12):40-43. [13] YANG K, ZHU Y, SHAN R , et al. Heavy metals in sludge during anaerobic sanitary landfill:speciation transformation and phytotoxicity[J]. Journal of Environmental Management, 2017,189:58-66.
doi: 10.1016/j.jenvman.2016.12.019 pmid: 28011427[14] CHAI X L, TAKAYUKI S, CAO Y X , et al. Characteristics and mobility of heavy metals in an MSW landfill:implications in risk assessment and reclamation[J]. Journal of Hazardous Materials, 2007,144(1/2):485-491.
doi: 10.1016/j.jhazmat.2006.10.056 pmid: 17118532[15] DU Y J, JIANG N J, SHEN S L , et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay[J]. Journal of Hazardous Materials, 2012,225:195-201.
doi: 10.1016/j.jhazmat.2012.04.072 pmid: 22614025[16] ZHENG S A, ZHENG X Q, CHEN C . Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain[J/OL]. PloS One, 2012.(2012-11-21)[2019-12-10]. https://doi.org/10.1371/journal.pone. 0049664. [17] 环境保护部. 固体废物22种金属元素的测定 电感耦合等离子体发射光谱法:HJ 781—2016[S]. 北京: 中国环境科学出版社, 2016. [18] 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法:HJ/T 299—2007[S]. 北京: 中国环境科学出版社, 2007. [19] 国家环境保护总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007[S]. 北京: 北京:中国环境科学出版社, 2007. [20] 国家质量监督检验检疫总局, 国家标准化管理委员会. 水泥胶砂中可浸出重金属的测定方法:GB/T 30810—2014[S]. 北京: 中国标准出版社, 2014. [21] 季文佳, 黄启飞, 王琪 , 等. 电镀污泥资源化与处置方法的研究[J]. 电镀与环保, 2010(1):45-48.JI W J, HUANG Q F, WANG Q , et al. A study of methods for resourcization and disposal of electroplating sludge[J]. Electroplating & Pollution Control, 2010(1):45-48. [22] YANG J Z, YANG Y, LI Y , et al. Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 2018,25:27106-27111.
doi: 10.1007/s11356-018-2472-6 pmid: 30022387[23] 杨玉飞, 杨昱, 黄启飞 , 等. 废物水泥窑共处置产品中重金属的释放特性[J]. 中国环境科学, 2009,29(2):175-180.YANG Y F, YANG Y, HUANG Q F , et al. Release characteristics of heavy metals in cement product from co-processing waste in cement kiln[J]. China Environmental Science, 2009,29(2):175-180. [24] 住房和城乡建设部. 城市道路工程设计规范(2016年版):CJJ 37—2012[S]. 北京: 中国建筑工业出版社, 2016. [25] 国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S/OL]. (2017-10-14)[2019-12-10]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=F745E3023BD5B10B9FB5314E0FFB5523. [26] ALLESCH A, BRUNNER P H . Assessment methods for solid waste management:a literature review[J]. Waste Management & Research, 2014,32(6):461-473.
doi: 10.1177/0734242X14535653 pmid: 24895080[27] MOY P, KRISHNAN N, ULLOA P , et al. Options for management of municipal solid waste in New York City:a preliminary comparison of health risks and policy implications[J]. Journal of Environmental Management, 2008,87(1):73-79
doi: 10.1016/j.jenvman.2007.01.032 pmid: 17379391[28] 刘锋, 王琪, 黄启飞 , 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008,21(6):9-15.LIU F, WANG Q, HUANG Q F , et al. Study on the standard methods of leaching toxicity of solid waste[J]. Research of Environmental Sciences, 2008,21(6):9-15. [29] 黄启飞, 王琪, 董路 , 等. 美国危险废物的管理与处理处置[J]. 环境保护科学, 2004(5):44-45.HUANG Q F, WANG Q, DONG L , et al. Management and disposal of hazardous waste in USA[J]. Environmental Protection Science, 2004(5):44-45. [30] QUINA M J, BORDADO J C M, QUINTA-FERREIRA R M . Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues[J]. Waste Management, 2011,31(2):236-245.
doi: 10.1016/j.wasman.2010.10.015 pmid: 21071197[31] 吴长淋 . 电镀污泥的性质及资源化研究进展[J]. 资源节约与环保, 2018(4):94. [32] LI C T, LEE W J, HUANG K L , et al. Vitrification of chromium electroplating sludge[J]. Environmental Science & Technology, 2007,41(8):2950-2956.
doi: 10.1021/es062803d pmid: 17533863[33] SHAO Y, YIN Z, LAO Y , et al. Design of mix proportion and experiment of compressive strength for ceramsite concrete blocks[J]. Concrete, 2007(10):34.
doi: 10.1186/1744-9081-10-34 pmid: 25269448[34] ASAVAPISIT S, CHOTKLANG D . Solidification of electroplating sludge using alkali-activated pulverized fuel ash as cementitious binder[J]. Cement and Concrete Research, 2004,34(2):349-353. [35] BAALOUSHA H M . Mapping groundwater contamination risk using GIS and groundwater modelling:a case study from the Gaza Strip,Palestine[J]. Arabian Journal of Geosciences, 2011(4):483-494. [36] HARTLEY W, EDWARDS R, LEPP N W . Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests[J]. Environmental Pollution, 2004,131(3):495-504.
doi: 10.1016/j.envpol.2004.02.017 pmid: 15261413[37] 杨威 . 铬污染土壤特性表征与陶粒制备机制[D]. 重庆:重庆大学, 2012. [38] 舒天楚, 李彦龙, 方飞远 , 等. 添加剂对污水污泥烧制陶粒轻骨料性能影响及其重金属毒性评价[J]. 燃烧科学与技术, 2019,25(3):274-282.SHU T C, LI Y L, FANG F Y , et al. Effects of additives on the material properties of lightweight aggregate from sewage sludge sintering and its toxicity evaluation of heavy metals[J]. Journal of Combustion Science and Technology, 2019,25(3):274-282. [39] 刘姚君, 颜碧兰, 汪澜 , 等. 我国水泥中可浸出重金属限值的研究[J]. 中国水泥, 2014(5):67-69. [40] HANDONG Y . The Experimental analyses on the solidified effect of heavy metals in the ceramsite calcined by the composite materials of electroplating sludge and seabeach sludge[J]. Ecological Environment and Technology of Concrete, 2011,477:42-48. [41] SADIQ R, HUSAIN T . A fuzzy-based methodology for an aggregative environmental risk assessment:a case study of drilling waste[J]. Environmental Modelling & Software, 2005,20(1):33-46.
点击查看大图
计量
- 文章访问数: 446
- HTML全文浏览量: 151
- PDF下载量: 112
- 被引次数: 0