留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于受体模型和控制单元分区的流域污染源解析——以永定河张家口段为例

赵含嫣 赵锐 孙源媛 郑明霞 苏婧 傅雪梅 丁鸿羽

赵含嫣, 赵锐, 孙源媛, 郑明霞, 苏婧, 傅雪梅, 丁鸿羽. 基于受体模型和控制单元分区的流域污染源解析——以永定河张家口段为例[J]. 环境工程技术学报, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008
引用本文: 赵含嫣, 赵锐, 孙源媛, 郑明霞, 苏婧, 傅雪梅, 丁鸿羽. 基于受体模型和控制单元分区的流域污染源解析——以永定河张家口段为例[J]. 环境工程技术学报, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008
ZHAO Hanyan, ZHAO Rui, SUN Yuanyuan, ZHENG Mingxia, SU Jing, FU Xuemei, DING Hongyu. Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008
Citation: ZHAO Hanyan, ZHAO Rui, SUN Yuanyuan, ZHENG Mingxia, SU Jing, FU Xuemei, DING Hongyu. Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008

基于受体模型和控制单元分区的流域污染源解析——以永定河张家口段为例

doi: 10.12153/j.issn.1674-991X.20200008
详细信息
    作者简介:

    赵含嫣(1995—),女,硕士研究生,研究方向为流域水环境风险管理,zhaohy1023@qq.com

    通讯作者:

    苏婧 E-mail: sujing169@163.com

  • 中图分类号: X524

Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example

More Information
    Corresponding author: SU Jing E-mail: sujing169@163.com
  • 摘要: 为识别永定河张家口段水体污染的主要来源并确定流域重点管控行业和优控单元,将受体模型与控制单元分区相结合,建立流域污染源解析方法。结合研究区水系分布、行政区划和数字高程模型(DEM)数据进行控制单元划分,利用聚类分析进行水质和污染源空间特征分析,通过因子分析和绝对主成分-多元线性回归(APCS-MLR)受体模型进行分区污染源识别与贡献率计算。结果表明:永定河张家口段按水质污染程度可分为污染较重的A区(洋河、清水河中下游)和污染较轻的B区(洋河、清水河上游及桑干河);A区受工业点源与面源混合影响,其中工业点源、农业种植贡献率分别为43%、44%;B区主要受面源影响,其中农村生活及旅游、农业种植、畜禽养殖贡献率分别为30%、18%、17%;由污染源空间特征,提出A区的重点管控行业为冶金和食品制造业,B区则为采矿业和食品制造业,确定覆盖阳原县的2、3号,覆盖涿鹿县北部和蔚县北部的5号,覆盖万全区的14号控制单元为面源污染优先防控单元。源解析与控制单元分区相结合的方法可较好地反映水质空间分异特征,提高源解析能力。

     

  • [1] KAZI T G, ARAIN M B, JAMALI M K, et al. Assessment of water quality of polluted lake using multivariate statistical techniques:a case study[J]. Ecotoxicology and Environmental Safety, 2009,72(2):301-309.
    doi: 10.1016/j.ecoenv.2008.02.024 pmid: 18423587
    [2] 卜红梅, 刘文治, 张全发. 多元统计方法在金水河水质时空变化分析中的应用[J]. 资源科学, 2009,31(3):429-434.

    BU H M, LIU W Z, ZHANG Q F. Application of multiple statistical analysis to spatial-temporal variations of water quality of the Jinshui River[J]. Resources Science, 2009,31(3):429-434.
    [3] 王翠榆, 杨永辉, 周丰, 等. 沁河流域水体污染物时空分异特征及潜在污染源识别[J]. 环境科学学报, 2012,32(9):2267-2278.

    WANG C Y, YANG Y H, ZHOU F, et al. Spatio-temporal characteristics and source identification of water pollutants in River Qinhe Basin[J]. Acta Scientiae Circumstantiae, 2012,32(9):2267-2278.
    [4] HUANG F, WANG X Q, LOU L P, et al. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques[J]. Water Research, 2010,44(5):1562-1572.
    doi: 10.1016/j.watres.2009.11.003 pmid: 19944441
    [5] WANG Y, WANG P, BAI Y J, et al. Assessment of surface water quality via multivariate statistical techniques:a case study of the Songhua River Harbin region,China[J]. Journal of Hydro-environment Research, 2013,7(1):30-40.
    [6] 窦筱艳, 赵雪艳, 徐珣, 等. 应用化学质量平衡模型解析西宁大气PM2.5的来源[J]. 中国环境监测, 2016,32(4):7-14.

    DOU X Y, ZHAO X Y, XU X, et al. Source apportionment of PM2.5 in Xining by the chemical mass balance[J]. Environmental Monitoring in China, 2016,32(4):7-14.
    [7] SALIM I, SAJJAD R U, PAULE-MERCADO M C, et al. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea[J]. Science of the Total Environment, 2019,663:764-775.
    pmid: 30738258
    [8] 白一茹, 张兴, 赵云鹏, 等. 基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2019,40(6):2885-2894.

    BAI Y R, ZHANG X, ZHAO Y P, et al. Spatial distribution characteristics and source apportionment of soil heavy metals in Chinese wolfberry land based on GIS and the receptor model[J]. Environmental Science, 2019,40(6):2885-2894.
    [9] 何卓识, 李超灿, 张靖天, 等. 受体模型在湖泊沉积物中PAHs、PFASs和OCPs源解析比较[J]. 环境工程技术学报, 2018,8(3):231-240.

    HE Z S, LI C C, ZHANG J T, et al. Analysis and comparison of PAHs,PFASs and OCPs sources in lake sediments by receptor model[J]. Journal of Environmental Engineering Technology, 2018,8(3):231-240.
    [10] CHEN H, CHEN R, TENG Y, et al. Contamination characteristics,ecological risk and source identification of trace metals in sediments of the Le’an River (China)[J]. Ecotoxicology and Environmental Safety, 2016,125:85-92.
    pmid: 26685780
    [11] 朱琳, 王雅南, 韩美, 等. 武水河水质时空分布特征及污染成因的解析[J]. 环境科学学报, 2018,38(6):2150-2156.

    ZHU L, WANG Y N, HAN M, et al. Spatio-temporal distribution of water quality and source identification of pollution in Wushui River Basin[J]. Acta Scientiae Circumstantiae, 2018,38(6):2150-2156.
    [12] YANG Y H, ZHOU F, GUO H C, et al. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods[J]. Environmental Monitoring and Assessment, 2010,170(1/2/3/4):407-416.
    [13] LIU L L, DONG Y C, KONG M, et al. Insights into the long-term pollution trends and sources contributions in Lake Taihu,China using multi-statistic analyses models[J]. Chemosphere, 2020,242:125272.
    pmid: 31896182
    [14] 李义禄, 张玉虎, 贾海峰, 等. 苏州古城区水体污染时空分异特征及污染源解析[J]. 环境科学学报, 2014,34(4):1032-1044.

    LI Y L, ZHANG Y H, JIA H F, et al. Spatio-temporal characteristics and source identification of water pollutants in ancient town of Suzhou[J]. Acta Scientiae Circumstantiae, 2014,34(4):1032-1044.
    [15] MENG L, ZUO R, WANG J S, et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology, 2018,218:70-83.
    [16] 洪慧, 李娟, 汪洋, 等. 基于统计学方法的地下水水质评价与成因分析:以齐齐哈尔市为例[J]. 环境工程技术学报, 2019,9(4):431-439.

    HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and genetic analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology, 2019,9(4):431-439.
    [17] 金陶陶. 流域水污染防治控制单元划分研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [18] 陶华旸. 黄河甘肃流域水污染控制单元划分与控制目标预测分析[D]. 兰州:兰州大学, 2013.
    [19] 毛光君. 河流污染物总量分配方法研究[D]. 北京:中国环境科学研究院, 2013.
    [20] 方玉杰, 万金保, 罗定贵, 等. 流域总量控制下赣江流域控制单元划分技术[J]. 环境科学研究, 2015,28(4):540-549.

    FANG Y J, WAN J B, LUO D G, et al. Study on control unit division technology for total amount control in Gangjiang Basin[J]. Research of Environmental Sciences, 2015,28(4):540-549.
    [21] 张家口市人民政府. 张家口经济年鉴[M]. 北京: 中国统计出版社, 2018.
    [22] WANG Y, ZHANG S, CUI W, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River Basin,China:seasonal distribution,source apportionment,and potential risk assessment[J]. Science of the Total Environment, 2018,618:419-429.
    [23] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
    [24] 中国农业科学院农业环境与可持续发展研究所, 环境保护部南京环境科学研究所. 第一次全国污染源普查:农业污染源肥料流失系数手册[R]. 北京:国务院第一次全国污染源普查领导小组办公室, 2009.
    [25] 中国农业科学院农业环境与可持续发展研究所, 环境保护部南京环境科学研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册[R]. 北京:国务院第一次全国污染源普查领导小组办公室, 2009.
    [26] 张家口市水资源公报[A]. 张家口:张家口市水务局, 2018.
    [27] 全国水环境容量核定技术指南[R]. 北京:中国环境规划院, 2003.
    [28] 杜欢, 刘春敬, 宋漫利, 等. 河北省清水河流域农村生活污水产污特征[J]. 江苏农业科学, 2018,46(4):255-259.
    [29] SUNDARAY S K. Application of multivariate statistical techniques in hydrogeochemical studies:a case study:Brahmani-Koel River (India)[J]. Environmental Monitoring & Assessment, 2010,164(1/2/3/4):297.
    [30] 邵志江, 刘莲, 汪涛. 永定河上游张家口地区主要河流污染物来源解析[J]. 环境污染与防治, 2020,42(2):204-211.

    SHAO Z J, LIU L, WANG T. Source analysis of main rivers’ pollutants of the upper reaches of Yongding River in Zhangjiakou area[J]. Environmental Pollution & Control, 2020,42(2):204-211.
    [31] 徐华山, 徐宗学, 唐芳芳, 等. 漳卫南运河流域水质时空变化特征及其污染源识别[J]. 环境科学, 2012,33(2):359-369.

    XU H S, XU Z X, TANG F F, et al. Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River Basin[J]. Environmental Science, 2012,33(2):359-369.
    [32] 张家口市城市总体规划(2001—2020年)(2011年修订)[A]. 石家庄:河北省人民政府, 2001.
    [33] SONKE J E, SIVRY Y, VIERS J, et al. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter[J]. Chemical Geology, 2008,252:145-157.
    [34] CHEN J B, GAILLARDET J, LOUVAT P, et al. Zn isotopes in the suspended load of the Seine River,France:isotopic variations and source determination[J]. Geochimica et Cosmochimica Acta, 2009,73:4060-4076.
    [35] THAPALIA A BORROK DM, van METRE P C,, et al. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake[J]. Environmental Science and Technology, 2010,44(5):1544-1550.
    doi: 10.1021/es902933y pmid: 20143818
    [36] AGORHOM E A, LEM J P, SKINNER W, et al. Challenges and opportunities in the recovery/rejection of trace elements in copper flotation:a review[J]. Minerals Engineering, 2015,78:45-57.
    [37] DEHBANDI R, MOORE F, KESHAVARZI B. Geochemical sources, hydrogeochemical behavior,and health risk assessment of fluoride in an endemic fluorosis area, central Iran[J]. Chemosphere, 2018,193:763-776.
    pmid: 29175404
    [38] 宋大平, 左强, 刘本生, 等. 农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J]. 农业环境科学学报, 2018,37(6):1219-1231.

    SONG D P, ZUO Q, LIU B S, et al. Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution:a case study of the Huaihe River Basin, China[J]. Journal of Agro-Environment Science, 2018,37(6):1219-1231.
    [39] YANG G, YU G R, LUO C Y, et al. Groundwater nitrogen pollution and assessment of its health risks:a case study of a typical village in rural-urban continuum,China[J]. PLoS One, 2012,7(4):e33982.
    pmid: 22514611
    [40] GUO W X, FU Y C, RUAN B Q, et al. Agricultural non-point source pollution in the Yongding River Basin[J]. Ecological Indicators, 2014,36:254-261.
    [41] WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China[J]. Science of the Total Environment, 2019,655:92-101.
    doi: 10.1016/j.scitotenv.2018.11.244 pmid: 30469072
    [42] 滕智超, 丁爱中, 李亚惠, 等. 赤水河上游水质时空特征分析及其污染源解析[J]. 北京师范大学学报(自然科学版), 2016,52(3):322-327.

    TENG Z C, DING A Z, LI Y H. Sources of water pollution and their spatiotemporal variations in the upper reach of the Chishui River[J]. Journal of Beijing Normal University (Natural Science), 2016,52(3):322-327.
    [43] SHRESTHA S, KAZAMA F. Assessment of surface water quality using multivariate statistical techniques:a case study of the Fuji River Basin,Japan[J]. Environmental Modelling & Software, 2007,22:464-475.
    [44] WEISS D J, RAUSCH N, MASON T F D, et al. Atmospheric deposition and isotope biogeochemistry of zinc in ambrotophic peat[J]. Geochimica et Cosmochimica Acta, 2007,71:3498-3517.
    [45] 吕睿喆, 王翔宇. 农副食品加工行业废水污染现状及对策研究[J]. 安徽农学通报, 2019,25(15):136-138.

    SONG R Z, WANG X Y. Current situation and countermeasure of wastewater pollution in agricultural and sideline food processing industry[J]. Anhui Agricultural Science Bulletin, 2019,25(15):136-138.
    [46] 赵建国, 李洪波, 李霄宇, 等. 永定河怀来段水质污染特征及污染源解析[J]. 环境科学与技术, 2018,41(增刊1):299-306.

    ZHAO J G, LI H B, LI X Y, et al. Water pollution characteristics and pollution source of Yongdinghe River in Huailai[J]. Environmental Science & Technology, 2018,41(Suppl 1):299-306.
    [47] 2017年张家口环境质量报告书[A]. 张家口:张家口市环境保护局, 2017.
    [48] 张家口市人民政府办公室关于印发张家口市2017年度水污染防治工作实施方案的通知[A/OL]. (2018-06-07)[2020-02-01]. http://hb.zjk.gov.cn/contents/40/6748.html.
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  138
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 刊出日期:  2020-09-20

目录

    /

    返回文章
    返回