-
摘要: 油基钻井岩屑资源化利用的有效方式是制备成块状固化体,但固化体在应用过程中存在多环芳烃浸出的风险。采用固体中无机组分有效量测试(NEN7371)方法和块状材料中无机组分的扩散实验(NEN7375)方法,研究固化体内萘、蒽、荧蒽、苯并(b)荧蒽和苯并(a)芘5种多环芳烃的释放特性,评估其浸出释放风险。结果表明:5种多环芳烃的有效释放率均在2%以下,其中苯并(a)芘有效释放率最高,浸出液中浓度超过GB/T 14848—2017《地下水质量标准》中Ⅲ类限值;在静态浸泡释放特征试验中,5种多环芳烃的释放集中在浸出前期,前16 d累积释放量占64 d累积释放总量的比值均超过78%;5种多环芳烃释放机理包括扩散控制、溶解释放、延滞释放、耗竭和表面冲刷,固化体中不同多环芳烃释放特征存在一定的差异,但总体上以扩散控制为主,后期均表现为耗竭机制。Abstract: An effective way to further dispose and utilize resources is to make oil-based drilling cuttings into blocky solidified body. However, when solidified body is used, PAHs may leach out. The release characteristics of 5 kinds of polycyclic aromatic hydrocarbons (PAHs) in solidified body, including naphthalene, anthracene, fluoranthene, benzo (b) fluoranthene and benzo (a) pyrene (BaP), were studied by using the test method of effective amount of inorganic components in solid (NEN7371) and the diffusion test method of inorganic components in bulk materials (NEN7375) and to assess their leaching release risks. The results showed that the effective release rates of the 5 kinds of PAHs were all below 2%. The effective release amount of BaP exceeded the limiting value of Category Ⅲ in Groundwater Quality Standard (GB/T 14848-2017). In static immersion release characteristic experiments, 5 kinds of PAHs released at the early stage, and their accumulated release amount at the previous 16 days accounted for more than 78% of the cumulative total release amount of 64 days. The release mechanism of the 5 kinds of PAHs included diffusion control, dissolution release, delayed release, depletion and surface wash-off. Different PAHs in solidified body had different release characteristics, but in general, they were mainly released in the way of diffusion control. In the later stage, they mainly released in the form of depletion mechanism.
-
Key words:
- oil-based drilling cuttings /
- solidified body /
- PAHs /
- leaching /
- release characteristics
-
[1] 张曼丽, 蔡洪英, 周琼. 重庆开展页岩气开采固体废物污染控制研究[J]. 资源再生, 2018(11):42-44.ZHANG M L, CAI H Y, ZHOU Q. Research on pollution control of solid waste in shale gas mining in Chongqing[J]. Resource Recycling, 2018(11):42-44. [2] 沈晓莉, 杨金忠, 徐天有, 等. 典型地区油气田水基钻井岩屑污染特征研究[J]. 环境污染与防治, 2017,39(5):480-483.SHEN X L, YANG J Z, XU T Y, et al. Research on pollution characteristic of water-based drilling cuttings of typical oil-gas fields[J]. Environmental Pollution & Control, 2017,39(5):480-483. [3] 吴娜, 聂志强, 李开环, 等. 页岩气开采钻井固体废物的污染特性[J]. 中国环境科学, 2019,39(3):1094-1100.WU N, NIE Z Q, LI K H, et al. Pollution characteristics of solid waste in shale gas mining drilling[J]. China Environmental Science, 2019,39(3):1094-1100. [4] KOGBARA R B, DUMKHANA B B, AYOTAMUNO J M, et al. Recycling stabilised/solidified drill cuttings for forage production in acidic soils[J]. Chemosphere, 2017,184:652-663.
doi: 10.1016/j.chemosphere.2017.06.042 pmid: 28628902[5] ZHANG X Y, YAO A G. Pilot experiment of oily cuttings thermal desorption and heating characteristics study[J]. Journal of Petroleum Exploration and Production Technology, 2018,16:1-8. [6] CHEN J, YAN L, WAN X L. The environmental protection problems in drilling a well[J]. Safety and Environmental Engineering, 2003,10(2):43-44. [7] YAN P, LU M, GUAN Y, et al. Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment[J]. Bioresoure Technology, 2011,102(22):10252-10259.
doi: 10.1016/j.biortech.2011.08.074[8] 郭沫. 油气田钻井废弃泥浆固化处理技术的探讨[J]. 中国石油和化工标准与质量, 2018,38(16):156-157. [9] 王朝强, 梅绪东, 何敏, 等. 我国页岩气油基钻屑处理及其资源化利用前景[J]. 粉煤灰综合利用, 2017(5):57-60.WANG C Q, MEI X D, HE M, et al. Oil-based drilling cuttings and resource utilization frontier on shale gas in our country[J]. Fly Ash Comprehensive Utilization, 2017(5):57-60. [10] 陆林峰. 钻井固体废物制免烧砖技术及应用[J]. 四川环境, 2012,31(增刊1):68-72.LU L F. The application and technology of unburned bricks manufactured by using drilling solid waste[J]. Sichuan Environment, 2012,31(Suppl 1):68-72. [11] WANG C Q, LIN X Y, MEI X D, et al. Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas[J]. Cleaner Production, 2019,206:282-296.
doi: 10.1016/j.jclepro.2018.09.128[12] ASADI S, MOSTAVI E, UGOCHUKWU E. Feasibility study of the potential use of drill cuttings in concrete[J]. Pavement Research and Technology, 2015,8(6):440-445. [13] TUNCAN A, TUNCAN M, KOYUNCU H. Use of petroleum contaminated drilling wastes as sub-base material for road construction[J]. Waste Management & Research, 2000,18(5):489-505. [14] 白鹤, 翁良宇, 赵广宇, 等. 钻井岩屑除油技术进展[J]. 当代化工, 2018,47(1):182-186.BAI H, WENG L Y, ZHAO G Y, et al. Review of oil removal technology of drill cuttings[J]. Contemporary Chemical Industry, 2018,47(1):182-186. [15] 李开环. 涪陵地区页岩气开采固体废物污染特性及资源化环境风险研究[D]. 重庆:重庆交通大学, 2018. [16] 环境保护部. 地表水环境质量标准:GB 3838—2002[S]. 北京:中国环境科学出版社, 2002. [17] ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons:source,environmental impact,effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016,25(1):107-123.
doi: 10.1016/j.ejpe.2015.03.011[18] 刘天璐, 杨洁, 王君, 等. 含油污泥及其污染水体中多环芳烃及其急性生物毒性测定[J]. 环境工程学报, 2017,11(5):3051-3058.LIU T L, YANG J, WANG J, et al. Determination of polycyclic aromatic hydrocarbons and acute biotoxicty for petroleum sludge and contaminated fresh water[J]. Chinese Journal of Environmental Engineering, 2017,11(5):3051-3058. [19] KOSSON D S, SLOOT H A V D, SANCHEZ F. An integrated framework for evaluating leaching in waste management and utilization of secondary materials[J]. Environmental Engineering Science, 2002,19(3):159-204.
doi: 10.1089/109287502760079188[20] SLOOT H A V D, KOSSON D S. Use of characterisation leaching tests and associated modelling tools in assessing the hazardous nature of wastes[J]. Journal of Hazardous Materials, 2012,207/208:36-43. [21] Netherlands Normalisation Institute. Leaching characteristics:determination of the availability of inorganic components for leaching-solid earthy and stony materials:NEN7371[S]. Amsterdam:Netherlands Normalisation Institute, 2004. [22] Netherlands Normalisation Institute. Leaching characteristics:determination of leaching of inorganic components with the diffusion test:NEN7375[S]. Amsterdam:Netherlands Normalisation Institute, 2004. [23] 国土资源部. 地下水质量标准:GB/T 14848—2017[S/OL]. (2017-10-14)[2020-01-20]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=F745E3023BD5B10B9FB5314E0FFB5523. [24] 环境保护部. 土壤和沉积物多环芳烃的测定气相色谱-质谱法:HJ 805—2016[S]. 北京:中国环境科学出版社, 2016. [25] 环境保护部. 水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法:HJ 478—2009[S]. 北京:中国环境科学出版社, 2009. [26] 段华波. 危险废物浸出毒性鉴别理论和方法研究[D]. 北京:中国环境科学研究院, 2006. [27] SLOOT H A V D. Systematic leaching behaviour of trace elements from construction materials and waste materials[J]. Studies in Environmental Science, 1991,48:19-36. [28] GHOSH D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016,7:1369.
doi: 10.3389/fmicb.2016.01369 pmid: 27630626[29] 张洪梅. 湖泊沉积物中多环芳烃菲吸附解吸特征研究[D]. 南京:南京农业大学, 2014.
点击查看大图
计量
- 文章访问数: 487
- HTML全文浏览量: 123
- PDF下载量: 93
- 被引次数: 0