Spatial-temporal dynamic change of fractional vegetation coverage and its driving factors in Liaohe Conservation Area
-
摘要: 基于500 m分辨率MODIS NDVI数据和Landsat TM/OLI影像构建了辽河保护区2000—2018年的30 m植被覆盖度(fractional vegetation coverage,FVC)数据集,分析了辽河保护区划定前(2000—2009年)和划定后(2011—2018年)植被覆盖时空动态变化及其驱动因素。结果表明:2000—2018年,辽河保护区植被覆盖度整体呈微弱的增加趋势,2000—2009年植被覆盖度呈增加趋势,斜率为0.67%/a,而2011—2018年植被覆盖度呈波动下降趋势,斜率为-0.27%/a,植被覆盖度降低区域主要分布在地势较低洼的河道两侧;相对于2010年,辽河保护区植被在2012—2014年呈轻微的恢复趋势,但2015—2018年又出现了退化趋势。对比植被覆盖度的模拟值和实际值发现,2011—2018年人类活动对植被覆盖度的贡献率增至1.12%,其中2014年人类活动对植被恢复的作用明显。总体而言,辽河保护区划定以来,植被覆盖度呈先上升后下降趋势,主要是由于气候变化引起的;人类活动对植被恢复的作用为正向,植被恢复中人类活动贡献率高达8.42%。Abstract: Based on the data of MODIS NDVI at 500-meter spatial resolution and the Landsat TM/OLI images, a 30-meter fractional vegetation coverage (FVC) data set of Liaohe Conservation Area was constructed, covering the time period 2000-2018. The study analyzed the spatial-temporal dynamics of FVC and its driving factors before and after the establishment of the Liaohe Conservation Area, during 2000 to 2009 and 2011 to 2018. The results showed that from 2000 to 2018, FVC of Liaohe Conservation Area showed a slightly upward overall trend, and that of the period between 2000 and 2009 witnessed an increasing trend with 0.67%/a, then declined with fluctuation during 2010-2018 with a negative slope -0.27%/a. A downward trend of FVC occurred at regional scale, the area of which mainly distributed on both sides of low-lying river reach. Comparing with the base year (2010), slightly restoration of vegetation in Liaohe Conservation Area presented during 2012-2014, also appeared the degradation trend from 2015 to 2018. By comparing the difference between the simulated FVC with the actual FVC in Liaohe Conservation Area, it was found that in the period of 2011-2018 the influence of human activities on FVC increased to 1.12%, and the restoration of vegetation in 2014 was significantly attributed to human activities. Overall, since the establishment of Liaohe Conservation Area, there was a tendency that FVC increased at first and then declined, which was attributed to the climate change. Furthermore, human activities had a positive effect on vegetation especially on vegetation restoration, the contribution of which was up to 8.42%.
-
[1] MOLDEN D, THARME R, ABDULLAEV I, et al. Maintaining biodiversity in irrigated landscapes[M]// The Art and Science of Ecoagriculture. Washington DC: Island Press, 2006. [2] 宋绪忠. 黄河下游河南段滩地植被特征与功能研究[D]. 北京:中国林业科学研究院, 2005. [3] 段亮, 宋永会, 张临绒, 等. 辽河保护区河岸带生态恢复技术研究[J]. 环境工程技术学报, 2014,4(1):8-12.
doi: 10.3969/j.issn.1674-991X.2014.01.002DUAN L, SONG Y H, ZHANG L R, et al. The ecological restoration technologies of riparian area in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology, 2014,4(1):8-12. doi: 10.3969/j.issn.1674-991X.2014.01.002[4] 黄凯, 郭怀成, 刘永, 等. 河岸带生态系统退化机制及其恢复研究进展[J]. 应用生态学报, 2007,18(6):1373-1382.
pmid: 17763745HUANG K, GUO H C, LIU Y, et al. Research progress on the degradation mechanisms and restoration of riparian ecosystem[J]. Chinese Journal of Applied Ecology, 2007,18(6):1373-1382. pmid: 17763745[5] GU Z, JU W, LI L, et al. Using vegetation indices and texture measures to estimate vegetation fractional coverage(VFC)of planted and natural forests in Nanjing city,China[J]. Advances in Space Research, 2013,51(7):1186-1194.
doi: 10.1016/j.asr.2012.11.015[6] 索安宁, 王兮之, 林勇, 等. 基于遥感的黄土高原典型区植被退化分析:以泾河流域为例[J]. 遥感学报, 2009,13(2):291-299.
doi: 10.11834/jrs.20090251SUO A N, WANG X Z, LIN Y, et al. Vegetation degradation analysis in typical region of the loess plateau based on remote sensing:a case in Jinghe River Basin[J]. Journal of Remote Sensing, 2009,13(2):291-299. doi: 10.11834/jrs.20090251[7] 李登科, 范建忠, 权文婷. 陕西省植被退化及其驱动因素分析[J]. 生态学杂志, 2015,34(10):2907-2913.LI D K, FAN J Z, QUAN W T. Analysis of vegetation degradation and its driving factors in Shaanxi Province[J]. Chinese Journal of Ecology, 2015,34(10):2907-2913. [8] 陈效逑, 王恒. 1982—2003年内蒙古植被带和植被覆盖度的时空变化[J]. 地理学报, 2009,64(1):84-94.
doi: 10.11821/xb200901009CHEN X Q, WANG H. Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003[J]. Acta Geographica Sinica, 2009,64(1):84-94. doi: 10.11821/xb200901009[9] 甘春英, 王兮之, 李保生, 等. 连江流域近18年来植被覆盖度变化分析[J]. 地理科学, 2011,31(8):1019-1024.GAN C Y, WANG X Z, LI B S, et al. Changes of vegetation coverage during recent 18 years in Lianjiang River Watershed[J]. Scientia Geographica Sinica, 2011,31(8):1019-1024. [10] YAN G J, LI L Y, ANDRÉC , et al. Improving the estimation of fractional vegetation cover from UAV RGB imagery by color unmixing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,158:23-34.
doi: 10.1016/j.isprsjprs.2019.09.017[11] GAO L, WANG X F, JOHNSON B A, et al. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,159:364-377.
doi: 10.1016/j.isprsjprs.2019.11.018[12] ZHANG M, WANG J M, LI S J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019,232:940-952.
doi: 10.1016/j.jclepro.2019.05.334[13] VIJAY K S, BHASKAR P S, OZGUR K, et al. Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery,artificial intelligence and regression based models in arid area[J]. Computers and Electronics in Agriculture, 2018,150:205-219.
doi: 10.1016/j.compag.2018.04.019[14] REZA A, QIHAO W, ABBAS A, et al. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area,Iran[J]. Remote Sensing of Environment, 2009,113(12):2606-2617.
doi: 10.1016/j.rse.2009.07.021[15] 刘宪锋, 杨勇, 任志远, 等. 2000—2009年黄土高原地区植被覆盖度时空变化[J]. 中国沙漠, 2013,33(4):1244-1249.
doi: 10.7522/j.issn.1000-694X.2013.00175LIU X F, YANG Y, REN Z Y, et al. Changes of vegetation coverage in the Loess Plateau in 2000-2009[J]. Journal of Desert Research, 2013,33(4):1244-1249. doi: 10.7522/j.issn.1000-694X.2013.00175[16] JIANG C, WANG F, ZHANG H Y, et al. Quantifying changes in multiple ecosystem services during 2000-2012 on the Loess Plateau,China,as a result of climate variability and ecological restoration[J]. Ecological Engineering, 2016,97:258-271.
doi: 10.1016/j.ecoleng.2016.10.030[17] 夏会娟, 孔维静, 孙建新, 等. 基于MODIS NDVI的辽河保护区成立前后植被覆盖时空动态研究[J]. 生态学报, 2018,38(15):5434-5442.
doi: 10.5846/stxb201709041594XIA H J, KONG W J, SUN J X, et al. Spatial-temporal dynamics of vegetation cover before and after establishment of Liaohe River Reserve based on MODIS NDVI[J]. Acta Ecologica Sinica, 2018,38(15):5434-5442. doi: 10.5846/stxb201709041594[18] 杨绘婷, 徐涵秋, 施婷婷, 等. 基于植被信息季节变换的植被覆盖度变化:以福建省连江县为例[J]. 应用生态学报, 2019,30(1):285-291.
pmid: 30907551YANG H T, XU H Q, SHI T T, et al. Fractional vegetation cover change based on vegetation seasonal variation correction:a case in Lianjiang County,Fujian Province,China[J]. Chinese Journal of Applied Ecology, 2019,30(1):285-291. pmid: 30907551[19] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012,67(9):1255-1268.
doi: 10.11821/xb201209010MU S J, LI J L, CHEN Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica, 2012,67(9):1255-1268. doi: 10.11821/xb201209010[20] 马默衡, 薛飞, 党安荣, 等. 基于动态遥感数据的北京主城区环带间植被覆盖变化[J]. 环境工程技术学报, 2019,9(4):404-413.MA M H, XUE F, DANG A R. et al. Study on the spatial-temporal change of vegetation coverage between the belts of Beijing’s main urban area based on dynamic remote sensing data[J]. Journal of Environmental Engineering Technology, 2019,9(4):404-413. [21] 刘斌, 孙艳玲, 王永财, 等. 基于SPOT/NDVI华北地区植被变化动态监测与评价[J]. 干旱区资源与环境, 2013,27(9):98-103.LIU B, SUN Y L, WANG Y C, et al. Monitoring and assessment of vegetation variation in North China based on SPOT/NDVI[J]. Journal of Arid Land Resources and Environment, 2013,27(9):98-103. [22] 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014,36(1):166-174.YI L, REN Z Y, ZHANG C, et al. Vegetation cover,climate and human activities on the Loess Plateau[J]. Resources Science, 2014,36(1):166-174. [23] 农业部. 天然草地退化、沙化、盐渍化的分级指标:GB 19377—2003[S/OL].( 2004-04-01)[2020-01-20]. https://www.spc.org.cn/online/GB%252019377-2003/. [24] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011,31(19):5495-5504.LI H X, LIU G H, FU B J. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011,31(19):5495-5504. [25] LITE S J, BAGSTAD K J, STROMBERG J C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance San Pedro River,Arizona,USA[J]. Journal of Arid Environments, 2005,63(4):785-813.
doi: 10.1016/j.jaridenv.2005.03.026[26] CAMPOREALE C, RIDOLFI L. Riparian vegetation distribution induced by river flow variability:a stochastic approach[J]. Water Resources Research, 2006,42(10):W10415. [27] RODRIGUEZ I I, D'ODORICO P, PORPORATO A, et al. On the spatial and temporal links between vegetation,climate,and soil moisture[J]. Water Resources Research, 1999,35(12):3709-3722.
doi: 10.1029/1999WR900255[28] SMIT G, RETHMAN N F. The influence of tree thinning on the soil water in a semi-arid savanna of southern Africa[J]. Journal of Arid Environments, 2000,44(1):41-59.
doi: 10.1006/jare.1999.0576
点击查看大图
计量
- 文章访问数: 541
- HTML全文浏览量: 164
- PDF下载量: 91
- 被引次数: 0