留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究

付丽亚 吴昌永 周鉴 罗晋 左剑恶 周岳溪

付丽亚, 吴昌永, 周鉴, 罗晋, 左剑恶, 周岳溪. 3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J]. 环境工程技术学报, 2021, 11(1): 135-143. doi: 10.12153/j.issn.1674-991X.20200061
引用本文: 付丽亚, 吴昌永, 周鉴, 罗晋, 左剑恶, 周岳溪. 3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J]. 环境工程技术学报, 2021, 11(1): 135-143. doi: 10.12153/j.issn.1674-991X.20200061
FU Liya, WU Changyong, ZHOU Jian, LUO Jin, ZUO Jian’e, ZHOU Yuexi. Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 135-143. doi: 10.12153/j.issn.1674-991X.20200061
Citation: FU Liya, WU Changyong, ZHOU Jian, LUO Jin, ZUO Jian’e, ZHOU Yuexi. Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 135-143. doi: 10.12153/j.issn.1674-991X.20200061

3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究

doi: 10.12153/j.issn.1674-991X.20200061
详细信息
    作者简介:

    付丽亚(1986—),女,助理研究员,博士,主要从事水污染控制技术研究,liyafu1115@163.com

    通讯作者:

    周岳溪 E-mail: zhouyuexi@263.com

  • 中图分类号: X703.1

Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater

More Information
    Corresponding author: ZHOU Yuexi E-mail: zhouyuexi@263.com
  • 摘要: 一体式臭氧-曝气生物滤池(biological aerated filter, BAF)是工业废水臭氧氧化深度处理节能降耗的潜在工艺,但臭氧氧化方式对该组合工艺处理效果的影响目前鲜见报道。研究了单独臭氧、臭氧/双氧水和臭氧/催化剂3种臭氧氧化方式下一体式臭氧-BAF工艺对石化废水生化出水有机物的处理效果,并结合出水有机物分子量分布和三维荧光区域积分变化及BAF微生物形貌、生物量和生物活性等,分析有机物去除特性。结果表明:单独臭氧方式下,优化臭氧投加量为5 mg/L,出水平均COD为55.7 mg/L;臭氧/双氧水方式下,出水COD会有一定程度积累;臭氧/催化剂方式下,优化臭氧投加量为5 mg/L时,出水平均COD为39.5 mg/L,去除率为39.9%,出水COD能稳定达标(GB 31571—2015《石油化学工业污染物排放标准》)。单独臭氧方式下,出水中分子量≤1 300 Da和3 000~6 000 Da的有机物增加,生物量降低68.3%;臭氧/双氧水方式下,出水中分子量≤800 Da的有机物增加,生物量降低60%以上;臭氧/催化剂方式出水大部分分子量范围的有机物都能被去除,生物量削减48.3%,且生物活性提高106.4%,溶解性微生物代谢副产物和类腐殖酸等降解优势明显。

     

  • [1] 生态环境部. 环境统计年鉴[M]. 北京:中国环境年鉴社, 2018.
    [2] WU C Y, LI Y N, ZHOU Y X, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant:technologies research and full scale application[J]. Science of the Total Environment, 2018,633:189-197.
    [3] WU C Y, ZHOU Y X, SUN X M, et al. The recent development of advanced wastewater treatment by ozone and biological aerated filter[J]. Environmental Science Pollution Research, 2018,25(9):8315-8329.
    doi: 10.1007/s11356-018-1393-8 pmid: 29411279
    [4] RIED A, MIELCKE J, WIELAND A, et al. An overview of the integration of ozone systems in biological treatment steps[J]. Water Science & Technology, 2007,55(12):253-258.
    pmid: 17674856
    [5] 钱宇章. BAF新工艺在印染废水处理中的应用研究[D]. 广州:华南理工大学, 2010.
    [6] HE Y, WANG X, XU J, et al. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents[J]. Bioresource Technology, 2013,133:150-157.
    [7] 齐鲁青. 臭氧-BAF降解染料废水及微生物特性的研究[D]. 广州:华南师范大学, 2012.
    [8] 颜金利. 一体式O3-BAF深度处理印染纺织废水工程化应用研究[D]. 广州:华南理工大学, 2012.
    [9] FU L Y, WU C Y, ZHOU Y X, et al. Effects of residual ozone on the performance of microorganisms treating petrochemical wastewater[J]. Environmental Science Pollution Research, 2019,26(26):27505-27515.
    pmid: 31332684
    [10] 凌珠钦, 汪晓军, 王开演. 臭氧-BAF工艺深度处理石化废水[J]. 应用化工, 2008,37(8):917-920.
    [11] IIACONI C D. Biological treatment and ozone oxidation:integration or coupling[J]. Bioresource Technology, 2012,106:63-68.
    pmid: 22206914
    [12] WU C Y, GAO Z, ZHOU Y X, et al. Treatment of secondary effluent from a petrochemical wastewater treatment plant by ozonation-biological aerated filter[J]. Journal of Chemical Technology and Biotechnology, 2015,90(3):543-549.
    [13] WU C Y, ZHOU Y X, WANG Y, et al. Innovative combination of Fe2+-BAF and ozonation for enhancing phosphorus and organic micropollutants removal treating petrochemical secondary effluent[J]. Journal of Hazardous Materials, 2016,323:654-662.
    pmid: 27776874
    [14] LOTITO A M, FRATINO U, BERGNA G, et al. Integrated biological and ozone treatment of printing textile wastewater[J]. Chemical Engineering Journal, 2012, 195-196:261-269.
    doi: 10.1016/j.cej.2012.05.006
    [15] FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone,ozone/H2O2,and ozone/catalyst[J]. Chemosphere, 2019,233:34-43.
    doi: 10.1016/j.chemosphere.2019.05.207 pmid: 31163306
    [16] ZHOU Q, CABANISS S E, MAURICE P A. Considerations in the use of highpressure size exclusion chromatography(HPSEC)for determining molecular weights of aquatic humic substances[J]. Water Research, 2000,34(14):3505-3514.
    [17] IGNATEV A, TUHKANEN T. Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions[J]. Chemosphere, 2019,214:587-597.
    pmid: 30286425
    [18] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003,37(24):5701-5710.
    doi: 10.1021/es034354c pmid: 14717183
    [19] MENG F, ZHOU Z, NI B J, et al. Characterization of the size-fractionated biomacromolecules:tracking their role and fate in a membrane bioreactor[J]. Water Research, 2011,45(15):4661-4671.
    doi: 10.1016/j.watres.2011.06.026 pmid: 21757216
    [20] NI B J, RITTMANN B E, YU H Q. Soluble microbial products and their implications in mixed culture biotechnology[J]. Trends in Biotechnology, 2011,29(9):454-463.
    pmid: 21632131
    [21] 高祯, 吴昌永, 周岳溪, 等. 臭氧预氧化对石化污水厂二级出水水质的作用[J]. 化工学报, 2013,64(9):3390-3395.

    GAO Z, WU C Y, ZHOU Y X, et al. Effect of pre-ozonation on biological effluent of petrochemical wastewater treatment plant[J]. CIESC Journal, 2013,64(9):3390-3395.
    [22] 魏祥甲, 王兰, 乔瑞平, 等. O3/H2O2深度氧化处理石化废水的研究[J]. 工业用水与废水, 2014,45(6):23-27.

    WEI X J, WANG L, QIAO R P, et al. Study on advanced treatment of petrochemical wastewater by O3-H2O2 combined oxidation[J]. Industrial Water & Wastewater, 2014,45(6):23-27.
    [23] 王倩. O3/UV/H2O2-BAC深度处理兰州石化二级废水实验研究[D]. 兰州:兰州交通大学, 2013.
    [24] YO S H. Three oxidation systems (O3,H2O2,H2O2/O3) for the secondary treatment wastewater of petrochemical plants[J]. Journal of the Chinese Institute of Environmental Engineering, 1997,7(1):43-48.
    [25] ZHANG S Y, WU C Y, ZHOU Y X, et al. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent[J]. Chemical Engineering Journal, 2018,345:280-289.
    [26] SUN X M, WU C Y, ZHOU Y X, et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater[J]. Chemical Engineering Journal, 2019,369:100-108.
    [27] VON GUNTEN U. Ozonation of drinking water:part Ⅰ.oxidation kinetics and product formation[J]. Water Research, 2003,37(7):1443-1467.
    pmid: 12600374
    [28] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water:Ⅰ.non-dissociating organic compounds[J]. Water Research, 1983,17(2):173-183.
    [29] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water:Ⅱ.dissociating organic compounds[J]. Water Research, 1983,17(2):185-194.
    [30] FU L Y, WU C Y, ZHOU Y X, et al. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater[J]. Environmental Technology, 2017,38(20):2523-2533.
    doi: 10.1080/09593330.2016.1269838 pmid: 27927071
    [31] FU L Y, WU C Y, ZHOU Y X, et al. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter(BAF)[J]. Water Science & Technology, 2016,73(8):2031-2038.
    [32] 魏复盛. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
    [33] CHIN Y P, AIKEN G, O’LOUGHLIN E. Molecular weight,polydispersity and spectroscopic properties of aquatic humic substances[J]. Environmental Science & Technology, 1994,28(11):1853-1858.
    doi: 10.1021/es00060a015 pmid: 22175925
    [34] CHOW C W, FABRIS R, VAN L J, et al. Assessing natural organic matter treatability using high performance size exclusion chromatography[J]. Environmental Science & Technology, 2008,42(17):6683-6689.
    doi: 10.1021/es800794r pmid: 18800549
    [35] 付丽亚. 石化废水臭氧/曝气生物滤池深度处理工艺与机理研究[D]. 北京:清华大学, 2018.
    [36] GLAZE W H, KANG J W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE:laboratory studies[J]. Journal American Water Works Association, 1988,88:57-63.
    [37] ALLEMANE H, DELOUANE B, PAILLARD H, et al. Comparative efficiency of three systems (O3,O3/H2O2,and O3/TiO2) for the oxidation of natural organic matter in water[J]. Ozone-Science Engineering, 1993,15(5):419-432.
    [38] LIN C K, TSAI T Y, LIU J C, et al. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system[J]. Water Research, 2001,35(3):699-704.
    doi: 10.1016/s0043-1354(00)00254-2 pmid: 11228967
    [39] YAN S T, CHU L B, XING X H, et al. Analysis of the mechanism of sludge ozonation by a combination of biological and chemical approaches[J]. Water Research, 2009,43(1):195-203.
    doi: 10.1016/j.watres.2008.09.039
    [40] KUO W C, PARKIN G F. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties[J]. Water Research, 1996,30(4):915-922.
    doi: 10.1016/0043-1354(95)00201-4
  • 加载中
计量
  • 文章访问数:  722
  • HTML全文浏览量:  274
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-24
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回