Study on spatial and temporal distribution, influencing factors and control measures of water transparency of Nanhu Lake water system
-
摘要: 根据2018—2019年南湖水系的现场调查结果,分析其水体透明度(SD)的季节变化、空间分布,探讨SD的影响因素及沉水植物恢复所需水体SD目标值。结果表明,南湖水体SD为10.0~46.0 cm,均值为24.8 cm,显著低于国内部分湖泊,空间上SD低值主要集中在入湖河口与航道附近,时间上在5月、9月和10月较低;南湖周边水体的SD为8.0~71.0 cm,均值为27.6 cm,低值主要集中在外环河网西部及北部的河口交叉处。相关性分析表明,水体SD与无机悬浮物(ISS)和有色溶解性有机物(CDOM)在254 nm处的吸收系数均呈显著相关,相关系数(R2)分别为0.68和0.34,其中ISS对SD的影响更大。结合水下地形和光补偿深度,确定南湖水体SD恢复初期目标值为80~100 cm;提高南湖水体SD应从减少水体悬浮物浓度和控制DOM方面入手。Abstract: The seasonal variation and spatial distribution of water transparency (SD) in Nanhu Lake were analyzed according to the data of field survey from 2018 to 2019, and the influencing factors and the target value required by submerged plants of SD were explored. The results indicated that SD of Nanhu Lake was between 10.0 cm to 46.0 cm, with an average value of 24.8 cm, which was significantly lower than some lakes in China. The low SD existed near the estuary into Nanhu Lake and channel, and Nanhu Lake had lower SD in May, September and October. SD of the surrounding river network ranged from 8.0 to 71.0 cm, with an average value of 27.6 cm, and the low values mainly existed in the western part of the outer river network and the northern estuary. Correlation analysis showed that SD was significantly correlated with inorganic suspended solids (ISS) and absorption coefficient of chromophoric dissolved organic matter at 254 nm, with the correlation coefficient (R2) of 0.68 and 0.34, respectively, and ISS had the higher influence on SD. Combining with the underwater terrain and the light compensation depth, SD restoration value in the initial stage of Nanhu Lake was determined by 80 to 100 cm. Reducing the concentrations of SS and DOM should be conducted to improve SD of Nanhu Lake.
-
-
[1] 张运林, 秦伯强, 陈伟民, 等. 太湖水体透明度的分析、变化及相关分析[J]. 海洋湖沼通报, 2003(2):30-36. ZHANG Y L, QIN B Q, CHEN W M, et al. Distribution seasonal variation and correlation analysis of the transparency in Taihu Lake[J]. Transactions of Oceanology and Limnology, 2003(2):30-36.
[2] 王书航, 姜霞, 王雯雯, 等. 蠡湖水体透明度的时空变化及其影响因素[J]. 环境科学研究, 2014,27(7):688-695. WANG S H, JIANG X, WANG W W, et al. Dynamic spatial and temporal changes in water transparency and their influencing factors in Lihu Lake[J]. Research of Environmental Science, 2014,27(7):688-695.
[3] 张晓晶, 李畅游, 贾克力, 等. 乌梁素海水体透明度分布及影响因子相关分析[J]. 湖泊科学, 2009,21(6):879-884. ZHANG X J, LI C Y, JIA K L, et al. Spatial-temporal changes in water transparency and its impact factors in Lake Wuliangsuhai[J]. Journal of Lake Sciences, 2009,21(6):879-884.
[4] 李佐琛, 段洪涛, 申秋实, 等. 藻源性湖泛发生过程CDOM变化对水色的影响[J]. 湖泊科学, 2015,27(4):616-622. LI Z C, DUAN H T, SHEN Q S, et al. The changes of water color induced by chromophoric dissolved organic matter(CDOM)during the formation of black blooms[J]. Journal of Lake Sciences, 2015,27(4):616-622.
[5] 穆光熠. 河流水体CDOM光学特性及其对生态环境要素的响应[D]. 长春:东北师范大学, 2019. [6] 李佳璐. 基于水下光场的沉水植物恢复区域划分研究[D]. 北京:中国环境科学研究院, 2015. BRICAUD A, MOREL A, PRIEUR L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain[J]. Limnology & Oceanography, 1981,26:43-53.
[8] HAVENS K E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake[J]. Hydrobiologia, 2003,493(1/2/3):173-186.
[9] 李剑超, 胡仁志, 王波, 等. 船舶螺旋桨射流扰动下的污染底泥起悬研究[J]. 环境科学与技术, 2005,28(2):6-8. [10] 马天驰. 嘉兴内河航运对水环境的影响及对策研究[J]. 浙江港航, 2013(3):19-21. [11] ZHANG Y, QIN B, ZHU G, et al. Chromophoric dissolved organic matter(CDOM)absorption characteristics in relation to fluorescence in Lake Taihu,China,a large shallow subtropical lake[J]. Hydrobiologia, 2007,581(1):43-52.
[12] 吕伟伟, 姚昕, 张保华, 等. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 2018,39(5):2056-2066. LÜ W W, YAO X, ZHANG B H, et al. Fluorescent characteristics and environmental significance of particulate organic matter in Lake Taihu,China[J]. Environmental Science, 2018,39(5):2056-2066.
[13] 刘霞, 刘宝贵, 陈宇炜, 等. 鄱阳湖浮游植物叶绿素a及营养盐浓度对水位波动的响应[J]. 环境科学, 2016,37(6):2141-2148. LIU X, LIU B G, CHEN Y W, et al. Responses of nutrients and chlorophyll a to water level fluctuations in Poyang Lake[J]. Environmental Science, 2016,37(6):2141-2148.
[14] 王书航, 姜霞, 王雯雯, 等. 蠡湖水体悬浮物的时空变化及其影响因素[J]. 中国环境科学, 2014,34(6):1548-1555. WANG S H, JIANG X, WANG W W, et al. Spatial-temporal dynamic changes of the water suspended matter and its influencing factors in Lihu Lake[J]. China Environmental Science, 2014,34(6):1548-1555.
[15] 熊剑, 喻方琴, 田琪, 等. 近30年来洞庭湖水质营养状况演变特征分析[J]. 湖泊科学, 2016,28(6):1217-1225. XIONG J, YU F Q, TIAN Q, et al. The evolution of water quality and nutrient condition in Lake Dongting in recent 30 years[J]. Journal of Lake Sciences, 2016,28(6):1217-1225.
[16] 王岩, 姜霞, 李永峰, 等, 洞庭湖氮磷时空分布与水体营养状态特征[J]. 环境科学研究, 2014,27(5):484-491. WANG Y, JIANG X, LI Y F, et al. Spatial and temporal distribution of nitrogen and phosphorus and nutritional characteristics of water in Dongting Lake[J]. Research of Environmental Sciences, 2014,27(5):484-491.
[17] 田琪, 李利强, 欧伏平, 等. 洞庭湖氮磷时空分布及形态组成特征[J]. 水生态学杂志, 2016,37(3):19-25. TIAN Q, LI L Q, OU F P, et al. Temporal-spatial distribution and speciation of nitrogen and phosphorus in Dongting Lake[J]. Journal of Hydroecology, 2016,37(3):19-25.
[18] 王书航. 巢湖水华时空分布特征及成因初步分析[D]. 合肥:合肥工业大学, 2010. [19] 胡旻琪, 张玉超, 马荣华, 等. 巢湖2016年蓝藻水华时空分布及环境驱动力分析[J]. 环境科学, 2018,39(11):4925-4937. HU M Q, ZHANG Y C, MA R H, et al. Spatial and temporal dynamics of floating algal blooms in lake Chaohu in 2016 and their environmental drivers[J]. Environmental Science, 2018,39(11):4925-4937.
[20] 李德亮, 张婷, 肖调义, 等. 大通湖浮游植物群落结构及其与环境因子关系[J]. 应用生态学报, 2012,23(8):2107-2113. LI D L, ZHANG T, XIAO D Y, et al. Phytoplankton’s community structure and its relationships with environmental factors in an aquaculture lake,Datong Lake of China[J]. Chinese Journal of Applied Ecology, 2012,23(8):2107-2113.
[21] 尤爱菊, 吴芝瑛, 韩曾萃, 等. 引水等综合整治后杭州西湖氮、磷营养盐时空变化(1985—2013年)[J]. 湖泊科学, 2015,27(3):371-377. YOU A J, WU Z Y, HAN Z C, et al. Spatial and temporal distributions and variations of nutrients in the West Lake,Hangzhou,after the implementation of integrated water management program(1985-2013)[J]. Journal of Lake Sciences, 2015,27(3):371-377.
[22] 张运林, 秦伯强, 朱广伟, 等. 杭州西湖水体光学状况及影响因子分析[J]. 长江流域资源与环境, 2005,14(6):72-77. ZHANG Y L, QIN B Q, ZHU G W, et al. The light condition and affect factors in Hangzhou West Lake[J]. Resources and Environment in the Yangtze Basin, 2005,14(6):72-77.
[23] 徐轩. 梁子湖水质遥感影像反演模型和时空变化格局研究[D]. 武汉:武汉大学, 2017. [24] 朱梦娟. 梁子湖浮游植物群落结构及其与水环境理化因子的关系[D]. 武汉:华中农业大学, 2015. [25] 王书航, 李佳璐, 姜霞, 等. 基于光补偿深度的蠡湖沉水植物恢复区划分[J]. 环境科学研究, 2015,28(9):1389-1396. WANG S H, LI J L, JIANG X, et al. Division of submerged aquatic vegetation restoration region in Lihu Lake based on light compensation depth[J]. Research of Environmental Sciences, 2015,28(9):1389-1396.
-
期刊类型引用(10)
1. 刘水芹,孙凤云,季永兴. 上海骨干河湖悬浮物时空分布及感潮影响分析. 水资源保护. 2025(01): 178-185 . 百度学术
2. 吴佩翰,朱海,徐项哲,鞠茂森,闫世康,杨晨霞,周志博,唐洪武,王玲玲. 补水对蠡湖水体透明度改善效果的数值模拟. 水资源保护. 2025(01): 186-197 . 百度学术
3. 朱天依,王欢,胥瑞晨. 长三角“水乡客厅”水体透明度数值模型构建. 长江科学院院报. 2024(05): 51-58 . 百度学术
4. 张琳琳. 南北厅水系生态清洁小流域治理对策. 城市道桥与防洪. 2023(10): 133-135+142+21 . 百度学术
5. 车霏霏,姜霞,王书航,郑朔方,李贺,邢健宇. 嘉兴城区河网水系水环境问题识别与治理对策. 环境工程技术学报. 2022(02): 529-537 . 本站查看
6. 陈奋飞,马骏超,李华斌,成静,盛晟,周锋,周隽逸. 持续污染条件下的小微水体生态治理研究——以浙江大学华家池校区无名塘为例. 江苏林业科技. 2022(03): 28-34 . 百度学术
7. 魏志杰,尚晓,张彦朋,陆诗博,朱良才,翟国师,胡珂. 嘉兴市南湖生态环境修复工程的系统构建与效果评价. 环境工程学报. 2022(09): 3113-3124 . 百度学术
8. 李国卿,戴向荣,唐泽恒. 含酸高铁矿井水悬浮物浓度与透明度关系及其沉降特性研究. 广东化工. 2021(10): 32-34 . 百度学术
9. 吴鑫,彭宁彦,何亮,王瑞,刘方平,向爱农,苏甜,刘颖,葛刚. 抚河故道水体透明度时空变化及影响因素. 南昌大学学报(理科版). 2021(02): 182-188 . 百度学术
10. 王书航,郑朔方,尚晓,姜霞. 平原河网景观湖泊水质提升关键问题分析与对策研究——以嘉兴南湖为例. 环境工程技术学报. 2020(06): 891-896 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 493
- HTML全文浏览量: 121
- PDF下载量: 132
- 被引次数: 19