Estimation of fish productivity in Tangxun Lake under ecological fishery culture model and its impact on endogenous pollution
-
摘要: 通过汤逊湖天然饵料生物量的调查,评估在不投肥、不投饵条件下汤逊湖的鱼产力情况;根据主要鱼产力生长代谢参数评估生态渔业养殖模式下由鱼的排泄和排粪作用产生的污染负荷量及由生长增重存储在鱼体内的营养盐量。结果表明:汤逊湖天然鱼产力约为2 975.49 t/a,生态渔业养殖模式下养殖密度可控制在29 g/m3左右;排泄和排粪产生的营养盐氮、磷量分别为309.28、13.06 t/a,其中氮量高于鱼类生长增重存储的营养盐量(73.10 t/a),磷量低于鱼类生长增重存储的营养盐量(15.90 t/a)。生态渔业养殖产生一定量的内源污染物氮,但能削减水体中内源污染物磷,可作为控制湖泊富营养化的措施之一。Abstract: The biomass of natural bait in Tangxun Lake was investigated to evaluate the fish productivity of Tangxun Lake under the condition of neither fertilizer nor bait. The pollution load generated by excretion and defecation and the amount of nutrients stored in fish body by growth gain in ecological fishery culture were evaluated according to the main fish productivity growth metabolic parameters. The results showed that, in Tangxun Lake, the natural fish productivity was around 2 975.49 t/a, and the ecological fishery stocking density could be controlled around 29 g/m3; nitrogen and phosphorus from the sources of excretion and defecation was 309.28 and 13.06 t/a, respectively; in which nitrogen was higher than the weight gained from the nutrition metabolism in fish bodies (73.10 t/a); and phosphorus was lower than the weight gained from the nutrition metabolism in fish bodies (15.90 t/a). Ecological fishery culture produced a certain amount of endogenous pollutant nitrogen, but it could reduce the endogenous pollutant phosphorus in water, which could be used as one of the measures to control lake eutrophication.
-
Key words:
- Tangxun Lake /
- ecological fishery culture /
- fish productivity /
- internal pollution /
- eutrophication
-
[1] 项朝阳, 徐华艳, 李崇光. 发挥优势促进武汉市渔业大发展[J]. 中国渔业经济, 2003,21(1):41-44. [2] 王少舟. 鱼塘养殖污染的原因及防治技术探究[J]. 农业与技术, 2013,33(5):233. [3] 第一次全国污染源普查水产养殖业污染源产排污系数手册[G/OL]. (2016-08-01)[2020-03-10]. http://www.doc88.com/p-2095235430405.html. http://www.doc88.com/p-2095235430405.html [4] 谢平. 鲢、鳙与藻类水华控制[M]. 北京: 科学出版社, 2003. [5] 王寿兵, 屈云芳, 徐紫然. 基于生物操纵的富营养化湖库蓝藻控制实践[J]. 水资源保护, 2016,32(5):1-4.WANG S B, QU Y F, XU Z R. Algal bloom control in eutrophic lakes and reservoirs based on biomanipulation[J]. Water Resources Protection, 2016,32(5):1-4. [6] DOMIZON I, DEVAUX J. Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. consequences for the use of silver carp in biomanipulation[J]. Academie Des Sciences Paris Comptes Rendus Serie Generale La Vie Des Sciences, 1999,322(7):621-628. [7] 闫玉华, 钟成华, 邓春光. 非经典生物操纵修复富营养化的研究进展[J]. 安徽农业科学, 2007,35(12):3459-3460.YAN Y H, ZHONG C H, DENG C G. Progress of non-traditional bio-manipulation in the controlling of eutrophication[J]. Journal of Anhui Agricultural Sciences, 2007,35(12):3459-3460. [8] 武汉市汤逊湖生态养护规划[R]. 武汉:武汉市梁子湖水产集团有限公司, 2019. [9] 汤逊湖流域水环境综合治理规划[R]. 武汉:长江生态环保集团, 2019. [10] 武汉市汤逊湖“一湖一策”实施方案[R]. 武汉:武汉市河长制工作领导小组办公室, 2018. [11] 许巧情. 湖泊不同利用方式对底栖动物群落的影响[D]. 武汉:华中农业大学, 2001. [12] 林婉莲, 刘鑫洲. 武汉东湖生态系中浮游物的营养结构[J]. 海洋与湖沼, 1990,21(5):411-417.LIN W L, LIU X Z. Trophic structure of the seston in Donghu Lake ecosystem,Wuhan[J]. Oceanologia Et Limnologia Sinica, 1990,21(5):411-417. [13] 裴国凤. 淡水湖泊底栖藻类的生态学研究[D]. 武汉:中国科学院水生生物研究所, 2006. [14] 农业部. 湖泊渔业生态类型参数:SC/T1101—2008[S/OL]. (2008-07-01)[2020-02-05]. https://www.doc88.com/p-696378565030.html. [15] 水利部. 水库鱼产力评价标准SL 563—2011[S]. 北京: 中国水利水电出版社, 2011. [16] 王骥, 王建. 浮游植物的叶绿素含量、生物量、生产量相互换算中的若干问题[J]. 武汉植物学研究, 1984,2(2):249-258.WANG J, WANG J. Some problems in the conversion among chlorophylla,biomass,and production of phytoplankton[J]. Wuhan Botanical Research, 1984,2(2):249-258. [17] 林婉莲, 刘鑫洲. 武汉东湖颗粒有机碎屑现存量的测定[J]. 水生生物学集刊, 1984,8(3):323-330.LIN W L, LIU X Z. The particulate organic detritus content in Lake Donghu,Wuhan[J]. Journal of Hydrobiology, 1984,8(3):323-330. [18] 谢平. 武汉东湖颗粒悬浮物的结构与元素组成[J]. 水生生物学报, 1996,20(3):197-205.XIE P. Structure and elemental composition of dry seston in East Lake,Wuhan[J]. Acta Hydrobiologica Sinica, 1996,20(3):197-205. [19] 陈少莲, 刘肖芳, 华俐. 鲢、鳙在东湖生态系统的氮、磷循环中的作用[J]. 水生生物学报, 1991,15(1):8-26.CHEN S L, LIU X F, HUA L. The role of silver carp and bighead in the cycling of nitrogen and phosphorus in the East Lake ecosystem[J]. Acta Hydrobiologica Sinica, 1991,15(1):8-26. [20] 杨柳燕, 王楚楚, 孙旭, 等. 淡水湖泊微生物硝化反硝化过程与影响因素研究[J]. 水资源保护, 2016,32(1):12-22.YANG L Y, WANG C C, SUN X, et al. Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes[J]. Water Resources Protection, 2016,32(1):12-22. [21] 姜霞, 王书航, 张晴波, 等. 污染底泥环保疏浚工程的理念·应用条件·关键问题[J]. 环境科学研究, 2017,30(10):1497-1504.JIANG X, WANG S H, ZHANG Q B, et al. Analysis of concepts, conditions and critical problems in environmental dredging[J]. Research of Environmental Sciences, 2017,30(10):1497-1504. [22] 崔友源. 植物修复在水环境生态修复领域的实践[J]. 中国标准化, 2019(24):295-296. [23] 李春华, 叶春, 孔祥臻, 等. 浅水湖泊水生植物适宜生物量评估方法的探讨[J]. 中国环境科学, 2018,38(12):4644-4652.LI C H, YE C, KONG X Z, et al. Preliminary idea on assessment of macrophyte optimal biomass in shallow lakes[J]. China Environmental Science, 2018,38(12):4644-4652.
点击查看大图
计量
- 文章访问数: 498
- HTML全文浏览量: 169
- PDF下载量: 96
- 被引次数: 0