留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改良型生物滞留池在海绵城市雨水处理中的研究与应用

冉阳 付峥嵘 马满英 于东盛 詹令美 廖辉 韦程宸

冉阳, 付峥嵘, 马满英, 于东盛, 詹令美, 廖辉, 韦程宸. 改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报, 2021, 11(1): 173-180. doi: 10.12153/j.issn.1674-991X.20200094
引用本文: 冉阳, 付峥嵘, 马满英, 于东盛, 詹令美, 廖辉, 韦程宸. 改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报, 2021, 11(1): 173-180. doi: 10.12153/j.issn.1674-991X.20200094
RAN Yang, FU Zhengrong, MA Manying, YU Dongsheng, ZHAN Lingmei, LIAO Hui, WEI Chengchen. Research and application of amended bioretention tank in rainwater treatment of sponge city[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 173-180. doi: 10.12153/j.issn.1674-991X.20200094
Citation: RAN Yang, FU Zhengrong, MA Manying, YU Dongsheng, ZHAN Lingmei, LIAO Hui, WEI Chengchen. Research and application of amended bioretention tank in rainwater treatment of sponge city[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 173-180. doi: 10.12153/j.issn.1674-991X.20200094

改良型生物滞留池在海绵城市雨水处理中的研究与应用

doi: 10.12153/j.issn.1674-991X.20200094
详细信息
    作者简介:

    冉阳(1997—),男,硕士研究生,主要研究方向为海绵城市生物滞留技术,2499533280@qq.com

    通讯作者:

    付峥嵘 E-mail: 441680332@qq.com

  • 中图分类号: X52

Research and application of amended bioretention tank in rainwater treatment of sponge city

More Information
    Corresponding author: FU Zhengrong E-mail: 441680332@qq.com
  • 摘要: 生物滞留池是城市雨水低影响开发技术下的一种处理设施,由于其对污染物去除效果较好,运行条件不复杂,投资成本不高,在国内外得到广泛应用。基于国内外改良型生物滞留池研究动态的分析,提出生物滞留池经填料基质、厌氧环境、结构优化、有效蓄水深度、入渗率和水力流动方向等方面改良后,可在保持传统生物滞留池对悬浮颗粒物、重金属/类金属、病原体和油脂类等去除效果的同时,提升对氮、磷污染物的去除效果。总结了改良型生物滞留池处理城市雨水中污染物的基本原理与典型特征,归纳了改良型生物滞留池处理雨水的设计和应用范围,并对未来的研究与发展方向进行了展望,以期为海绵城市基础设施工程建设和老旧区城市改造提供参考。

     

  • [1] LI H, DING L Q, REN M L, et al. Sponge city construction in China:a survey of the challenges and opportunities[J]. Water, 2017,9(9):594.
    doi: 10.3390/w9090594
    [2] 李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展[J]. 干旱区研究, 2014,31(3):431-439.

    LI J K, LIU Z C, HUANG N J, et al. Advance in the study on bioretention technology for low-impact development[J]. Arid Zone Research, 2014,31(3):431-439.
    [3] 高晓丽. 道路雨水滞留系统内填料的研究[D]. 太原:太原理工大学, 2014.
    [4] ELLIS J B, REVITT D M, HARROP D O, et al. The contribution of highway surfaces to urban stormwater sediments and metals loadings[J]. Science of the Total Environment, 1987,59:339-349.
    doi: 10.1016/0048-9697(87)90457-8
    [5] JIA H F, WANG Z, ZHEN X Y, et al. China’s sponge city construction:a discussion on technical approaches[J]. Frontiers of Environmental Science & Engineering, 2017,11(4):18.
    [6] 许萍, 黄俊杰, 张建强, 等. 模拟生物滞留池强化径流雨水中的氮磷去除研究[J]. 环境科学与技术, 2017,40(2):107-111.

    XU P, HUANG J J, ZHANG J Q, et al. Research on simultaneous removal of nitrogen and phosphorus in runoff rainwater by bioretention[J]. Environmental Science & Technology, 2017,40(2):107-111.
    [7] MUERDTER C P, WONG C K, LEFEVRE G H. Emerging investigator series:the role of vegetation in bioretention for stormwater treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits[J]. Environmental Science:Water Research & Technology, 2018,4(5):592-612.
    [8] KIM H, SEAGREN E A, ALLEN P D. Engineered bioretention for removal of nitrate from stormwater runoff[J]. Water Environment Research, 2003,75(4):355-367.
    doi: 10.2175/106143003x141169 pmid: 12934829
    [9] ASHOORI N, TEIXIDO M, SPAHR S, et al. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate,metals,and trace organic contaminants from urban stormwater runoff[J]. Water Research, 2019,154:1-11.
    doi: 10.1016/j.watres.2019.01.040 pmid: 30763870
    [10] 许萍, 何俊超, 张建强, 等. 生物滞留池强化脱氮除磷技术研究进展[J]. 水污染防治, 2015,33(11):21-25.

    XU P, HE J C, ZHANG J Q, et al. Overview of bioretention for improving removal of nitrogen and phosphorus technologies[J]. Water Pollution Control, 2015,33(11):21-25.
    [11] LIU J, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014,48:607-614.
    pmid: 24313712
    [12] WONG T H F, SOMES N L G. Astochastic approach to designing wetlands for stormwater pollution control[J]. Water Science and Technology, 1995,32(1):145-153.
    [13] 姜应和, 律启慧, 邓海龙, 等. 生物滞留池对雨水径流中污染物的净化效果[J]. 武汉理工大学学报, 2018,40(7):84-90.

    JIANG Y H, LÜ Q H, DENG H L, et al. Removal of contaminants from stormwater runoff through bioretention[J]. Journal of Wuhan University of Technology, 2018,40(7):84-90.
    [14] WILCOCK R J, MULLER K, van ASSEMA G B, et al. Attenuation of nitrogen,phosphorus and E. coli inputs from pasture runoff to surface waters by a farm wetland:the importance of wetland shape and residence time[J]. Water Air & Soil Pollution, 2012,223(2):499-509.
    [15] OSMAN M, YUSOF K W, TAKAIJUDIN H, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019,11(19):5415.
    doi: 10.3390/su11195415
    [16] GUERRA H, KIM Y. Understanding the performance and applicability of low impact development structures under varying infiltration rates[J]. KSCE Journal of Civil Engineering, 2020,24(5):1430-1438.
    doi: 10.1007/s12205-020-2274-5
    [17] HALABURKA B J, LEFEVRE G H, LUTHY R G. Evaluation of mechanistic models for nitrate removal in woodchip bioreactors[J]. Environmental Science & Technology, 2017,51(9):5156-5164.
    doi: 10.1021/acs.est.7b01025 pmid: 28394589
    [18] XIONG J Q, REN S H, HE Y F, et al. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment[J]. Chemosphere, 2019,237:124424.
    pmid: 31377594
    [19] FENG G L, LETEY J, WU L. Water ponding depths affect temporal infiltration rates in a water-repellant sand[J]. Soil Science Society of America Journal, 2001,65(2):315-320.
    doi: 10.2136/sssaj2001.652315x
    [20] LUCAS W C, GREENWAY M. Nitrogen retention in bioretention mesocosms with outlet controls[C]// World Environmental and Water Resources Congress 2010.California:American Society of Civil Engineers, 2010: 3038-3047.
    [21] ZHANG W, SANG M, CHE W, et al. Nutrient removal from urban stormwater runoff by an up-flow and mixed-flow bioretention system[J]. Environmental Science and Pollution Research, 2019,26:17731-17739.
    doi: 10.1007/s11356-019-05091-4 pmid: 31030400
    [22] 王书敏, 何强, 徐强, 等. 生物滞留系统去除地表径流中的氮素研究评述[J]. 水科学进展, 2015,26(1):140-146.

    WANG S M, HE Q, XU Q, et al. Summary of nitrogen removal in surface runoff by bioretention system[J]. Advances in Water Science, 2015,26(1):140-146.
    [23] SOLEIMANIFAR H, DENG Y, WU L, et al. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff[J]. Chemosphere, 2016,154:289-292.
    doi: 10.1016/j.chemosphere.2016.03.101 pmid: 27060636
    [24] LI H, DAVIS A P. Water quality improvement through reductions of pollutant loads using bioretention[J]. Journal of Environmental Engineering, 2009,135(8):567-576.
    doi: 10.1061/(ASCE)EE.1943-7870.0000026
    [25] LI L, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science & Technology, 2014,48(6):3403-3410.
    pmid: 24571092
    [26] LI J H, LǛ G H, BAI W B, et al. Modification and use of biochar from wheat straw for nitrate and phosphate removal from water[J]. Desalination and Water Treatment, 2016,57:4681-4693.
    [27] LIU J Y, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014,48:607-614.
    doi: 10.1021/es404022b pmid: 24313712
    [28] 周永超. 改良型生物滞留池对雨水径流中氮磷污染物去除效果研究[D]. 镇江:江苏大学, 2018.
    [29] QIU F G, ZHAO S, ZHAO D Y, et al. Enhanced nutrient removal in bioretention systems modified with water treatment residuals and internal water storage zone[J]. Environmental Science:Water Research & Technology, 2019,5(5):993-1003.
    [30] 王建军, 李田, 张颖. 给水厂污泥改良生物滞留填料除磷效果的研究[J]. 环境科学, 2014,35(12):4642-4647.

    WANG J J, LI T, ZHANG Y. Water treatment residual as a bioretention media amendment for phosphors removal[J]. Environmental Science, 2014,35(12):4642-4647.
    [31] HSIEH C, DAVIS A P, NEEDELMAN B A, et al. Bioretention column studies of phosphorus removal from urban stormwater runoff[J]. Water Environment Research, 2017,79(2):177-184.
    doi: 10.2175/106143006x111745 pmid: 17370843
    [32] LI J K, LI L Y, DONG W, et al. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff[J]. Water Science and Technology, 2018,78(9):1937-1945.
    doi: 10.2166/wst.2018.464 pmid: 30566097
    [33] 杜晓丽, 韩强, 于振亚, 等. 海绵城市建设中生物滞留设施应用的若干问题分析[J]. 给水排水, 2017,43(1):54-58.

    DU X L, HAN Q, YU Z Y, et al. Analysis of some problems in application of biological detention facilities in sponge city construction[J]. Water & Wastewater Engineering, 2017,43(1):54-58.
    [34] LIU J, SAMPLE D J, OWEN J S, et al. Assessment of selected bioretention blends for nutrient retention using mesocosm experiments[J]. Journal of Environment Quality, 2014,43(5):1754-1763.
    doi: 10.2134/jeq2014.01.0017
    [35] BARRETT M E, LIMOUZIN M, LAWLER D F. Effects of media and plant selection on biofiltration performance[J]. Journal of Environmental Engineering, 2013,139(4):462-470.
    [36] GILCHRIST S, BORST M, STANDER E K. Factorial study of rain garden design for nitrogen removal[J]. Journal of Irrigation & Drainage Engineering, 2014,140(3):04013016.
    [37] PALMER E T, POOR C J, HINMAN C, et al. Nitrate and phosphate removal through enhanced bioretention media:mesocosm study[J]. Water Environment Research, 2013,85:823-832.
    pmid: 24175412
    [38] LUCAS W C, GREENWAY M. Hydraulic response and nitrogen retention in bioretention mesocosms with regulated outlets:part Ⅱ.nitrogen retention[J]. Water Environment Research, 2011,83:703-713.
    [39] GLAISTER B J, FLETCHER T D, COOK P L, et al. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters:the role of filter media,vegetation and saturated zone[J]. Water Science & Technology, 2014,69:1961-1969.
    [40] GOH H W, ZAKARIA N A, LAU T L, et al. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area[J]. Urban Water Journal, 2017,14:134-142.
    [41] GUO H, LIM F, ZHANG Y, et al. Soil column studies on the performance evaluation of engineered soil mixes for bioretention systems[J]. Desalination and Water Treatment, 2014,52:3661-3667.
    [42] 胡爱兵, 张书函, 陈建刚. 生物滞留池改善城市雨水径流水质的研究进展[J]. 环境污染与防治, 2011,33(1):74-82.

    HU A B, ZHANG S H, CHEN J G. Progress on the improvement of urban stormwater runoff quality by bioretention[J]. Environmental Pollution & Control, 2011,33(1):74-82.
    [43] 仇付国, 卢超, 代一帆, 等. 改良雨水生物滞留系统除污效果及基质中磷的形态分布研究[J]. 给水排水, 2017,43(3):48-54.

    QIU F G, LU C, DAI Y F, et al. Decontamination effect of improved rainwater bioretention system and distribution of phosphorus forms in substrates[J]. Water & Wastewater Engineering, 2017,43(3):48-54.
    [44] 熊家晴, 何一帆, 白雪琛, 等. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019,13(9):2164-2172.

    XIONG J Q, HE Y F, BAI X C, et al. Removal effect of phosphorus in rain runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019,13(9):2164-2172.
    [45] 朱志强. 改良型生物滞留池对雨水径流中污染物去除效果的研究[D]. 西安:长安大学, 2017.
    [46] YOU Z Y, ZHANG L, PAN S Y, et al. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff[J]. Water Research, 2019,161:61-73.
    [47] 彭博. SMB改良型生物滞留池系统去除污染物研究[D]. 西安:长安大学, 2018.
    [48] 赵倩, 许仕荣, 周永潮, 等. 生物质炭改良生物滞留系统去除氮素的试验研究[J]. 中国给水排水, 2019,35(1):96-101.

    ZHAO Q, XU S R, ZHOU Y C, et al. Nitrogen removal by bioretention system modified with biochar[J]. China Water & Wastewater, 2019,35(1):96-101.
    [49] YAN Q, DAVIS A P, JAMES B R. Enhanced organic phosphorus sorption from urban stormwater using modified bioretention media:batch studies[J]. Journal of Environmental Engineering, 2016,142(4):1-11.
    [50] TIAN J, JIN J, CHIU P C, et al. A pilot-scale,bi-layer bioretention system with biochar and zerovalent iron for enhanced nitrate removal from stormwater[J]. Water Research, 2019,148:378-387.
    doi: 10.1016/j.watres.2018.10.030
  • 加载中
计量
  • 文章访问数:  886
  • HTML全文浏览量:  229
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回