Comprehensive benefit evaluation of planting models for the prevention and control of celery non-point source pollution
-
摘要: 采用问卷调查、层次分析、专家咨询等方法,构建了综合考虑经济效益、产品品质和环境效益3个方面共包括12项指标的芹菜面源污染防治种植模式综合效益评估指标体系,应用该指标体系在巢湖流域开展了由不同施肥方式、是否施用松土促根剂和生物基膜等单项技术组合的不同面源污染防治种植模式效益评估的实证研究。结果表明:经济效益表现最好的是减量施肥+松土促根剂模式,产品品质效益最优的是减量施肥模式,环境效益最好的是有机无机肥混施+松土促根剂+生物基膜模式,综合效益最好的是有机无机肥混施+松土促根剂+生物基膜模式。采用减量施肥和有机无机肥混施模式,同时配合松土促根剂和生物基膜的技术组合可有效提高综合效益。Abstract: The questionnaire survey, analytic hierarchy process, expert consultation methods were adopted to construct a comprehensive benefit evaluation index system with 12 indexes, for the evaluation of planting models for the prevention and control of celery non-point source pollution, considering economic benefit, product quality and environmental benefit. Based on the index system, an empirical study was carried out to evaluate benefits of different planting models for non-point source pollution control, combining different fertilization methods, application of soil loosening and rooting agent and bio-based film in Chaohu Lake Basin. The results showed that: the best model of economic benefit was the combination of reduced fertilization with soil loosening and rooting agent, the optimal model of product quality benefit was the reduced fertilization model, the best environmental benefit model was organic-inorganic mixture fertilization plus soil loosening and rooting agent plus bio-based film model, and the optimal comprehensive benefit mode was the combination of organic-inorganic mixture fertilization, rooting agent and bio-based film model. Combined with the experimental results, the reduced fertilization and organic-inorganic mixed fertilization should be preferred, and the technical combination of soil loosing and rooting agent and bio-based film can effectively improve the comprehensive benefits.
-
Key words:
- celery /
- planting model /
- index system /
- pollution prevention /
- benefit evaluation
-
[1] 施卫明, 薛利红, 王建国, 等. 农村面源污染治理的“4R”理论与工程实践:生态拦截技术[J]. 农业环境科学学报, 2013,32(9):1697-1704.SHI W M, XUE L H, WANG J G, et al. A reduce-retain-reuse-restore technology for controlling rural non-point pollution in China:eco-retain technology[J]. Journal of Agro-Environment Science, 2013,32(9):1697-1704. [2] VITOUSEK P M, NAYLOR R, CREWS T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009,324(5934):1519-1520. [3] 李艳苓, 朱昌雄, 李红娜, 等. 基于层次分析法的农业面源污染防治技术评价[J]. 环境工程技术学报, 2019,9(4):355-361.LI Y L, ZHU C X, LI H N, et al. Evaluation of agricultural non-point source pollution control technologies based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology, 2019,9(4):355-361. [4] 项颂, 吴越, 吕兴菊, 等. 洱海流域农业面源污染空间分布特征及分类控制策略[J]. 环境科学研究, 2020,33(11):2474-2483.XIANG S, WU Y, LÜ X J, et al. Characteristics and spatial distribution of agricultural non-point source pollution in Erhai Lake Basin and its classified control strategy[J]. Research of Environmental Sciences, 2020,33(11):2474-2483. [5] 冯武焕, 朱永利, 赵科刚, 等. 西安种植业面源污染调查与分析[J]. 中国农学通报, 2014,30(15):152-156.FENG W H, ZHU Y L, ZHAO K G, et al. Survey and analysis of area-source pollution in Xian planting[J]. Chinese Agricultural Science Bulletin, 2014,30(15):152-156. [6] SUN B, ZHANG L X, YANG L Z, et al. Agricultural non-point source pollution in China:causes and mitigation measures[J]. AMBIO, 2012,41(4):370-379. [7] 刘莉, 胡正义. 基于污染物削减效果和成本的农业面源污染控制技术优选:以太湖地区为例[J]. 生态与农村环境学报, 2015,31(4):608-616.LIU L, HU Z Y. Selection of optimal agricultural non-point source pollution prevention and control techniques based on effect and cost of their pollution reduction:a case study of the Taihu region[J]. Journal of Ecology and Rural Environment, 2015,31(4):608-616. [8] 张萍, 卢少勇, 潘成荣. 基于层次-灰色关联法的洱海农业面源污染控制技术综合评价[J]. 科技导报, 2017,35(9):50-55.ZHANG P, LU S Y, PAN C R. Evaluation of agricultural non-point source pollution prevention and control techniques using a grey analytic hierarchy process for Lake Erhai[J]. Science & Technology Review, 2017,35(9):50-55. [9] 李梁, 曹欣然, 庞燕, 等. 洱海流域农村生活污水治理技术评价[J]. 环境工程技术学报, 2019,9(4):349-354.LI L, CAO X R, PANG Y, et al. Evaluation of rural domestic wastewater treatment technologies in Lake Erhai Basin[J]. Journal of Environmental Engineering Technology, 2019,9(4):349-354. [10] 刘洁, 马友华, 石润圭, 等. 巢湖流域农业面源污染现状分析及防治对策思考[J]. 农业环境与发展, 2008,25(6):13-16. [11] YU H B, XI B D, JIANG J Y, et al. Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake,China[J]. Environmental Science and Pollution Research, 2011,18(8):1333-1342. [12] 合肥市统计局. 合肥统计年鉴2019[M]. 北京: 中国统计出版社, 2020. [13] 赵锡海. 蔬菜质量安全风险评价及监管研究[D]. 北京:中国农业科学院, 2008. [14] RUBATZKY V E, YAMAGUCHI M. World vegetables:principles,production,and nutritive values[M]. New York: Chapman and Hall,International Thomson Publishing, 1997. [15] 周建斌, 翟丙年, 陈竹君, 等. 设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J]. 农业环境科学学报, 2004,23(2):332-335.ZHOU J B, ZHAI B N, CHEN Z J, et al. Nutrient accumulations in soil profiles under canopy vegetable cultivation and their potential environmental impacts[J]. Journal of Agro-Environment Science, 2004,23(2):332-335. [16] SAATY T L, VARGAS L G. Estimating technological coefficients by the analytic hierarchy process[J]. Socio-Economic Planning Sciences, 1979,13(6):333-336. [17] MA Q H, LIANG L S, LI Q, et al. Synthetical evaluation of the fruit quality of ‘Dongzao’ advanced selections using analytic hierarchy process and grey relational grade analysis[J]. Acta Horticulturae, 2012,940(940):213-220. [18] MRABET R, SABER N, EL-BRAHLI A, et al. Total,particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco[J]. Soil and Tillage Research, 2001,57(4):225-235. [19] LEE D R. Agricultural sustainability and technology adoption:issues and policies for developing countries[J]. American Journal of Agricultural Economics, 2005,87(5):1325-1334. [20] 周玮, 黄波, 管大海. 农业固体废弃物肥料化技术模糊综合评价[J]. 中国农学通报, 2015,31(29):129-135.ZHOU W, HUANG B, GUAN D H. Fuzzy comprehensive evaluation of agricultural solid wastes fertilizer transformed technology[J]. Chinese Agricultural Science Bulletin, 2015,31(29):129-135. [21] HVISTENDAHL M. Chinas push to add by subtracting fertilizer[J]. Science, 2010,327(5967):801.
pmid: 20150480[22] TI C P, LUO Y X, YAN X Y. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China[J]. Environmental Science and Pollution Research, 2015,22(23):18508-18518. [23] SHEN W S, LIN X G, SHI W M, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land[J]. Plant and Soil, 2010,337(1/2):137-150. [24] HAN J P, SHI J C, ZENG L Z, et al. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils[J]. Environmental Science and Pollution Research, 2015,22(4):2976-2986. [25] 孙丽. 巢湖流域减量施肥对番茄产量、品质及后季水稻产量影响研究[D]. 合肥:安徽农业大学, 2012. [26] 张传忠, 张静, 张慎举. 豫东平原旋耕麦田应用松土促根剂改土增产效应研究[J]. 中国农学通报, 2015,31(9):68-72.ZHANG C Z, ZHANG J, ZHANG S J. Effect of applying root promoter to loosen soil on soil improvement and production increase in eastern Henan Plain[J]. Chinese Agricultural Science Bulletin, 2015,31(9):68-72. [27] 陈义群, 董元华. 土壤改良剂的研究与应用进展[J]. 生态环境, 2008,17(3):1282-1289.CHEN Y Q, DONG Y H. Progress of research and utilization of soil amendments[J]. Ecology and Environment, 2008,17(3):1282-1289.
点击查看大图
计量
- 文章访问数: 383
- HTML全文浏览量: 92
- PDF下载量: 86
- 被引次数: 0