-
摘要: 低温等离子体具有操作简单、处理效率高、能耗低、环境友好的特点,在水体除藻方面已有研究和应用。在对国内外相关文献归纳和整理的基础上,系统梳理了低温等离子体除藻的机理、不同类型反应器及其应用与除藻效果;综述了低温等离子体除藻效率的影响因素,分析了该技术应用于除藻的优势,并对技术的发展趋势和应用前景进行了展望,以期为低温等离子体除藻的工程化应用提供参考。Abstract: The non-thermal plasma technology has the characteristics of simple operation, high treatment efficiency, low energy consumption and environmental friendliness, and has been studied and applied in algae removal in water. The mechanisms of non-thermal plasma for algae removal, different types of reactors and their application and effects of algae removal were systematically summarized based on summarizing and collating the relevant literature at home and abroad. Furthermore, the factors affecting the algae removal efficiency of non-thermal plasma technology were reviewed, and the advantages of this technology applied to algae removal were analyzed. In addition, some prospects for the development and application of this technology in algae removal were made in order to provide reference for the engineering application of non-thermal plasma on algae removal.
-
[1] SCHINDLER D W. The dilemma of controlling cultural eutrophication of lakes[J]. Proceedings of the Royal Society B:Biological Sciences, 2012,279:4322-4333.
doi: 10.1098/rspb.2012.1032[2] 王圣瑞, 倪兆奎, 席海燕. 我国湖泊富营养化治理历程及策略[J]. 环境保护, 2016,44(18):15-19.WANG S R, NI Z K, XI H Y. Management process and strategy of lake eutrophication in China[J]. Environmental Protection, 2016,44(18):15-19. [3] 邹华, 潘纲, 陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J]. 环境科学, 2004,28(6):40-43.ZOU H, PAN G, CHEN H. Flocculation and removal of water bloom cells Microcystis aeruginosa by chitosan-modified clays[J]. Environmental Science, 2004,28(6):40-43. [4] 袁俊, 朱光灿, 吕锡武. 气浮除藻工艺的比较及影响因素[J]. 净水技术, 2012,31(6):25-28.YUAN J, ZHU G C, LÜ X W. Comparison and influence factors of algae removal with air-flotation processes[J]. Water Purification Technology, 2012,31(6):25-28. [5] SINDELAR H R, YAP J N, BOYER T H, et al. Algae scrubbers for phosphorus removal in impaired waters[J]. Ecological Engineering, 2015,85:144-158. [6] MEREL S, WALKER D, CHICANA R, et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins[J]. Environment International, 2013,59:303-327.
doi: 10.1016/j.envint.2013.06.013 pmid: 23892224[7] 高岩, 张芳, 刘新红, 等. 漂浮水生植物对富营养化水体中N2O产生及输移过程的调节作用[J]. 环境科学学报, 2017,37(3):925-933.GAO Y, ZHANG F, LIU X H, et al. Mediation of production and transportation of N2O in eutrophic water with the free-floating aquatic plant[J]. Acta Scientiae Circumstantiae, 2017,37(3):925-933. [8] SUN Y, ZHENG H, XIONG Z, et al. Algae removal from raw water by flocculation and the fractal characteristics of flocs[J]. Desalination & Water Treatment, 2015,56(4):894-904. [9] SIERP M T, QIN J G, RECKNAGEL F. Biomanipulation:a review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia[J]. Reviews in Fish Biology & Fisheries, 2009,19(2):143-165. [10] 孙文浩, 俞子文, 余叔文. 城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理[J]. 环境科学学报, 1989,9(2):188-195.SUN W H, YU Z W, YU S W. The harness of an eutrophic water body by water-hyacinth[J]. Acta Scientiae Circumstantiae, 1989,9(2):188-195. [11] 王玉. 介质阻挡放电对微囊藻毒素的去除研究[D]. 大连:大连理工大学, 2007. [12] LANGMUIR I. Oscillations in ionized gases[J]. Proceedings of the National Academy of Sciences, 1928,14(8):627-637. [13] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016,42(3):685-706.SHAO T, ZHANG C, WANG R X, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016,42(3):685-706. [14] 项仕标. 激光点火原理与实践[M]. 郑州: 黄河水利出版社, 2004. [15] 孟月东, 钟少锋, 熊新阳. 低温等离子体技术应用研究进展[J]. 物理, 2006,35(2):140-146.MENG Y D, ZHONG S F, XIONG X Y. Advances in applied low-temperature plasma technology[J]. Physics, 2006,35(2):140-146. [16] 谷一杉. 气液混合高压脉冲放电反应器特性及应用研究[D]. 大连:大连海事大学, 2011. [17] 张红印, 王世珍, 黄星奕, 等. 低温等离子体应用于食品杀菌的研究进展[J]. 食品科技, 2007(12):26-29.ZHANG H Y, WANG S Z, HUANG X Y, et al. Review on progress of low temperature plasma used in food sterilization[J]. Food Science and Technology, 2007(12):26-29. [18] ELIASSON B. Nonequilibrium volume plasma chemical processing[J]. IEEE Transactions on Plasma Science, 1991,19(6):1063-1077. [19] LAROUSSI M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas:review,analysis,and prospects[J]. IEEE Transactions on Plasma Science, 2002,30(4):1409-1415. [20] 李兴文, 吴坚, 贾申利, 等. 放电等离子体基础及应用[M]. 北京: 科学出版社. 2017. [21] 李文浩, 田朝, 冯绅绅, 等. 大气压等离子体射流装置及应用研究进展[J]. 真空科学与技术学报, 2018,38(8):695-707.LI W H, TIAN C, FENG S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018,38(8):695-707. [22] MIZUNO A, CLEMENTS J S, DAVIS R H. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization[J]. IEEE Transactions on Industry Applications, 1986,22(3):516-522. [23] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009,34(1):1-11.WANG X X. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009,34(1):1-11. [24] 王兆均. 脉冲介质阻挡放电等离子体处理废水的研究[D]. 上海:复旦大学, 2013. [25] ROTH J R. Industrial plasma engineering[M]. Boca Raton: CRC Press LLC, 2001. [26] 马洪霞. 等离子体技术在军事和航天领域的应用[J]. 科技创新导报, 2009,7(2):3. [27] EKEZIE F C, SUN D W, CHENG J H. A review on recent advances in cold plasma technology for the food industry:current applications and future trends[J]. Trends in Food Science & Technology, 2017,69:46-58. [28] LIAO X Y, LIU D H, XIANG Q S, et al. Inactivation mechanisms of non-thermal plasma on microbes:a review[J]. Food Control, 2017,75:83-91. [29] LAROUSSI M. Low temperature plasma-based sterilization:overview and state-of-the-art[J]. Plasma Processes & Polymers, 2010,2(5):391-400. [30] JIANG J F, HE X, LI L, et al. Effect of cold plasma treatment on seed germination and growth of wheat[J]. Plasma Science and Technology, 2014,16(1):54. [31] KAUSHIK N, KAUSHIK N, LINH N, et al. Plasma and nanomaterials:fabrication and biomedical applications[J]. Nanomaterials, 2019,9(1):98. [32] DI L B, ZHANG J S, ZHANG X L. A review on the recentprogress,challenges,and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts[J/OL]. Plasma Processes and Polymers, 2018. . [33] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016,31(24):16-24.ZHANG X X, XIAO H Y, HUANG Y Y. A review of degradation of SF6 waste by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016,31(24):16-24. [34] SHANG K, LI J, MORENT R. Hybrid electric discharge plasma technologies for water decontamination:a short review[J]. Plasma Science & Technology, 2019,24:5-13. [35] HATTORI Y, MUKASA S, TOYOTA H, et al. Electrical breakdown of microwave plasma in water[J]. Current Applied Physics, 2013,13(6):1050-1054. [36] BURAKOV V S, NEVAR E A, NEDEL’KO M I, et al. Synjournal and modification of molecular nanoparticles in electrical discharge plasma in liquids[J]. Russian Journal of General Chemistry, 2015,85(5):1222-1237. [37] SUN B, SATO M, HARANO A, et al. Non-uniform pulse discharge-induced radical production in distilled water[J]. Journal of Electrostatics, 1998,43(2):115-126. [38] SUNKA P. Pulse electrical discharges in water and their applications[J]. Physics of Plasmas, 2001,8(5):2587-2594. [39] ROBINSON J W, HAM M, BALASTER A N. Ultraviolet radiation from electrical discharges in water[J]. Journal of Applied Physics, 1973,44(1):72-75. [40] 刘晓春, 冯长根, 朱祖良, 等. 水中高压脉冲放电的光辐射研究[J]. 北京理工大学学报, 1999,19(1):8-12.LIU X C, FENG C G, ZHU Z L, et al. Light radiation from pulsed discharges in water[J]. Transactions of Beijing Institute of Technology, 1999,19(1):8-12. [41] 施围, 邱毓昌, 张乔根. 高电压工程基础[M]. 北京: 机械工业出版社, 2006. [42] MARTIN E A. Experimental investigation of a high-energy density,high-pressure arc plasma[J]. Journal of Applied Physics, 1960,31(2):255-267.
doi: 10.1063/1.1735555[43] 郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州:浙江大学, 2013. [44] COLEMAN A J, SAUNDERS J E, CRUML A, et al. Acoustic cavitation generated by an extracorporeal shockwave lithotripter[J]. Ultrasound in Medicine & Biology, 1987,13(2):69-76.
doi: 10.1016/0301-5629(87)90076-7 pmid: 3590362[45] 骆新峥, 马海乐, 高梦祥. 脉冲磁场杀菌机理分析[J]. 食品科技, 2004(4):11-13.LUO X Z, MA H L, GAO M X. Research on mechanism of sterilization by pulse magnetic field[J]. Food Science and Technology, 2004(4):11-13. [46] ARONSSON K, LINDGREN M, JOHANSSON B, et al. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli,Listeria innocua,Leuconostoc mesenteroides and Saccharomyces cerevisiae[J]. Innovative Food Science & Emerging Technologies, 2001,2(1):41-54. [47] 依成武, 吴春笃, 徐玮, 等. 高压脉冲电场冲击波法的液体杀菌实验研究[J]. 高电压技术, 2007,33(2):109-111.YI C W, WU C D, XU W, et al. Study on sterilization by high voltage pulsed electric fields shock wave[J]. High Voltage Engineering, 2007,33(2):109-111. [48] LUKES P, CLUPEK M, BABICKY V, et al. Ultraviolet radiation from the pulsed corona discharge in water[J]. Plasma Sources Science & Technology, 2008,17(2):24012. [49] 马晓敏, 王怡中. 二氧化钛光催化氧化杀菌的研究及进展[J]. 环境工程学报, 2002,3(5):15-19.MA X M, WANG Y Z. Progress in study of disinfection of TiO2 photocatalytic oxidation[J]. Chinese Journal of Environmental Engineering, 2002,3(5):15-19. [50] KORACHI M, TURAN Z, ŞENTÜRK K, et al. An investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteria,yeasts,fungi and algae[J]. Journal of Electrostatics, 2009,67(4):678-685. [51] SAKUGAWA T, AOKI N, AKIYAMA H, et al. A method of cyanobacteria treatment using underwater pulsed streamer-like discharge[J]. IEEE Transactions on Plasma Science, 2014,42(3):794-798. [52] MIZUKOSHI Y, MATSUDA Y, YAMANAKA S, et al. Deactivation of algae by plasma generated in seawater flow[J]. Chemistry Letters, 2018,47(2):116-118. [53] TANG Y Z, LU X P, LAROUSSI M, et al. Sublethal and killing effects of atmospheric-pressure,nonthermal plasma on eukaryotic microalgae in aqueous media[J]. Plasma Processes & Polymers, 2008,5(6):552-558. [54] 李腊梅, 张宏, 黄青. 介质阻挡放电等离子体灭藻过程中藻细胞内含物降解规律的三维荧光光谱研究[J]. 生物学杂志, 2017,34(2):21-25.LI L M, ZHANG H, HUANG Q. EEM fluorescence study of the degradation of Microcystis aeruginosa contents caused by dielectric barrier discharge plasma treatment[J]. Journal of Biology, 2017,34(2):21-25. [55] 宋艳静. 液相脉冲放电处理压载水中小球藻的研究[D]. 大连:大连海事大学, 2011. [56] ARISTOVA N A, PISKAREV I M. Characteristic features of reactions initiated by a flash corona discharge[J]. Technical Physics, 2002,47(10):1246-1249. [57] LEE H Y, YONG S K, JIN P L, et al. Application of pulsed high-voltage discharge to algae elimination in freshwater[C/OL]. https://www.researchgate.net/publication/267555491_Application_of_pulsed_high-voltage_discharge_to_algae_elimination_in_freshwater. [58] 王翠华, 沈新强, 吴彦. 等离子体反应器结构与电极参数对灭藻效果的影响[J]. 高电压技术, 2009,35(5):1083-1087.WANG C H, SHEN X Q, WU Y. Effect of the structural and electrode parameters on plasma reactor of algal inactivation[J]. High Voltage Engineering, 2009,35(5):1083-1087. [59] 宋丹. 气液两相介质阻挡放电的特性及其灭藻应用[D]. 大连:大连海事大学, 2012. [60] BAI M, ZHANG Z, XUE X, et al. Killing effects of hydroxyl radical on algae and bacteria in ship’s ballast water and on their cell morphology[J]. Plasma Chemistry & Plasma Processing, 2010,30(6):831-840. [61] LAROUSSI M, LU X. Room-temperature atmospheric pressure plasma plume for biomedical applications[J]. Applied Physics Letters, 2005,87(11):113902. [62] LU X, LAROUSSI M, PUECH V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012,21(3):1-17. [63] 王翠华. 脉冲放电等离子体杀菌灭藻及其藻毒素去除的研究[D]. 大连:大连理工大学, 2008. [64] 顾雨辰, 张光生, 郝小龙, 等. 高压脉冲气液混合放电等离子体对铜绿微囊藻的灭活研究[J]. 上海环境科学, 2013,32(6):257-263.GU Y C, ZHANG G S, HAO X L, et al. A study on the inactivation of Microcystis aeruginosa by high voltage pulsed gas-liquid hybrid discharge plasma[J]. Shanghai Environmental Science, 2013,32(6):257-263. [65] 谢静, 郝小龙, 朱柏霖. 大气压等离子体射流对水中铜绿微囊藻的灭活作用[J]. 环境工程学报, 2015,9(4):1651-1658.XIE J, HAO X L, ZHU B L. Inactivation effect of Microcystis aeruginosa in water by atmospheric-pressure plasma jet[J]. Chinese Journal of Environmental Engineering, 2015,9(4):1651-1658.
点击查看大图
计量
- 文章访问数: 554
- HTML全文浏览量: 214
- PDF下载量: 93
- 被引次数: 0