留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微生物燃料电池降低活化内阻和欧姆内阻技术研究进展

赵阳 宋永会 段亮

赵阳, 宋永会, 段亮. 微生物燃料电池降低活化内阻和欧姆内阻技术研究进展[J]. 环境工程技术学报, 2021, 11(2): 343-353. doi: 10.12153/j.issn.1674-991X.20200167
引用本文: 赵阳, 宋永会, 段亮. 微生物燃料电池降低活化内阻和欧姆内阻技术研究进展[J]. 环境工程技术学报, 2021, 11(2): 343-353. doi: 10.12153/j.issn.1674-991X.20200167
ZHAO Yang, SONG Yonghui, DUAN Liang. Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 343-353. doi: 10.12153/j.issn.1674-991X.20200167
Citation: ZHAO Yang, SONG Yonghui, DUAN Liang. Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 343-353. doi: 10.12153/j.issn.1674-991X.20200167

微生物燃料电池降低活化内阻和欧姆内阻技术研究进展

doi: 10.12153/j.issn.1674-991X.20200167
详细信息
    作者简介:

    赵阳(1988—),男,博士研究生,主要研究方向为污水资源化与能源化, zhaoyang@craes.org.cn

    通讯作者:

    宋永会 E-mail: songyh@craes.org.cn

  • 中图分类号: X703.1

Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells

More Information
    Corresponding author: SONG Yonghui E-mail: songyh@craes.org.cn
  • 摘要: 微生物燃料电池(MFCs)技术是一种集污水净化和能源转化为一体的新型污水处理与能源回收技术,但是由于受到来自于阴极和阳极上不可逆反应过程和所用材料本身的限制,产生了由活化内阻、欧姆内阻等导致的电量损失,致使该技术难以获得较高且稳定的能量输出,进而制约其进一步发展。随着近年来材料和生物领域的技术进步,上述损失可以通过合理的设计而减少。针对降低内阻的2个主要组成部分——活化内阻和欧姆内阻,系统总结了近期在提高MFCs产电性能方面的技术进展,主要包括产电菌筛选、电子传递机理阐释、电极材料及功能修饰手段革新、分隔材料进步和反应器构型优化,并对未来降低MFCs内阻的技术发展进行了展望。

     

  • [1] 李海生. 增强环保科技创新能力支撑环境管理决策:需求·挑战·对策[J]. 环境科学研究, 2018,31(2):201-205.

    LI H S. Improving the innovation capability of environmental science and technology to support environmental management and decision-making:demands,challenges and countermeasures[J]. Research of Environmental Sciences, 2018,31(2):201-205.
    [2] 冯玉洁, 张照韩, 于艳玲, 等. 基于资源和能源回收的城市污水可持续处理技术研究进展[J]. 化学工业与工程, 2015,32(5):20-28.

    FENG Y J, ZHANG Z H, YU Y L, et al. Review of sustainable wastewater treatment technologies based on resource recovery and energy utilization[J]. Chemical Industry and Engineering, 2015,32(5):20-28.
    [3] 曲久辉, 王凯军, 王洪臣, 等. 建设面向未来的中国污水处理概念厂[N]. 中国环境报, 2014-01-07(10).
    [4] CHENG S, LIU H, LOGAN B E, et al. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006,40(1):364-369.
    [5] RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004,70(9):5373-5382.
    [6] 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007,28(8):1894-1898.

    LIANG P, FAN M Z, CAO X X, et al. Composition and measurement of the apparent internal resistance in microbial fuel cell[J]. Environmental Science, 2007,28(8):1894-1898.
    [7] SRIKANTH S, PAVANI T, SARMA P N, et al. Synergistic interaction of biocatalyst with bio-anode as a function of electrodematerials[J]. International Journal of Hydrog Energy, 2011,36(3):2271-2280.
    [8] VENKATA MOHAN S, VELVIZHI G, ANNIE M J, et al. Microbial fuel cell:critical factors regulating bio-catalyzed electrochemical process and recent advancements[J]. Renewable and Sustainable Energy Reviews, 2014,40:779-797.
    [9] RABAEY K, VERSTRAETE W. Microbial fuel cells:novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005,23(6):291-298.
    [10] WATANNABE K. Recent developments in microbial fuel cell technologies for sustainable bioenergy[J]. Journal of Bioscience and Bioengineering, 2008,106(6):528-536.
    doi: 10.1263/jbb.106.528 pmid: 19134546
    [11] PANT D, BOGAERT G V, DIELS L, et al. A review of the substrates used in microbial fuel cells(MFCs)for sustainable energy production[J]. Bioresource Technology, 2010,101(6):1533-1543.
    [12] OSMAN M H, SHAH A A, WALSH F C, et al. Recent progress and continuing challenges in bio-fuel cells:PartⅡ.microbial[J]. Biosensors & Bioelectronics, 2010,26(7):953-963.
    [13] LI W W, SHENG G P, LIU X, et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology, 2011,102(1):244-252.
    [14] BALAT M. Microbial fuel cells as an alternative energy option[J]. Energy Sources A, 2010,32(1):26-35.
    [15] NOORI M T, BHOWMICK G D, TIWARI B R, et al. Carbon supported Cu-Sn bimetallic alloy as an excellent low-cost cathode catalyst for enhancing oxygen reduction reaction in microbial fuel cell[J]. Journal of the Electrochemical Society, 2018,165(9):621-628.
    [16] RABAEY K, LISSENS G, VERSTRAETE W, et al. Microbial fuel cells:performances and perspectives[M]. Biofuels for Fuel Cells:Renewable Energy from Biomass Fermentation, 2005: 377-399.
    [17] VELVIZHI G, BABU S P, MOHANAKRISHNA G, et al. Evaluation of voltage sag-regain phases to understand the stability of bio-electrochemical system:electro-kinetic analysis[J]. Royal Society of Chemistry Advances, 2012,2(4):1379-1386.
    [18] RINGEISEN B R, HENDERSON E, WU P K, et al. High power density from aminiature microbial fuel cell using Shewanella oneidensis DSP10[J]. Environmental Science & Technology, 2006,40(8):2629-2634.
    pmid: 16683602
    [19] KIM B H, KIM H J, HYUN M S, et al. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium Shewanella putrefactions[J]. Journal of Microbiology and Biotechnology, 1999,9(2):127-131.
    [20] COPPI M V, LEANG C, LOVLEY D R, et al. Development of a genetic system for Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2001,67(7):3180-3187.
    doi: 10.1128/AEM.67.7.3180-3187.2001 pmid: 11425739
    [21] CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells[J]. Nature Biotechnology, 2003,21(10):1229-1232.
    [22] RABAEY K, BOON N, HOFTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005,39(9):3401-3408.
    pmid: 15926596
    [23] XING D F, ZUO Y, LOGAN B E, et al. Electricity generation by Rhodopseudomonas palustris DX-1[J]. Environmental Science & Technology, 2008,42(11):4146-4151.
    [24] PHAM C A, JUNG S J, PHUNG N T, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophila,isolated from a microbial fuel cell[J]. Fems Microbiology Letters, 2003,223(1):129-134.
    doi: 10.1016/S0378-1097(03)00354-9
    [25] ROSENBAUM M, SCHRODER U, SCHOLZ F, et al. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides[J]. Environmental Science & Technology, 2005,39(16):6328-6333.
    pmid: 16173600
    [26] BOROLE A P, O’NEILL H, TSOURIS C, et al. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum[J]. Biotechnology Letters, 2008,30(8):1367-1372.
    [27] XING D F, CHENG S A, LOGAN B E, et al. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction[J]. Applied Microbiology and Biotechnology, 2010,85(5):1575-1587.
    [28] ZHANG T, CUI C, CHEN S, et al. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell[J]. Electrochemistry Communications, 2008,10(2):293-297.
    doi: 10.1016/j.elecom.2007.12.009
    [29] DENG L F, LI F B, ZHOU S G, et al. A study of electron-shuttle mechanism in Klebsiella pneumoniae based microbial fuel cell[J]. Chinese Science Bulletin, 2009,55(1):99-104.
    [30] CALL D F, LOGAN B E. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells[J]. Biosensors & Bioelectronics, 2011,26(11):4526-4531.
    [31] LIU Y, KIM H, FRANKLIN R, et al. Gold line array electrodes increase substrate affinity and current density of electricity-producing G.sulfurreducens biofilms[J]. Energy & Environmental Science, 2010,3(11):1782-1788.
    [32] HOlMES D E, NICOLL J S, BOND D R, et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae,Geopsychrobacter electrodiphilus in electricity production by a marine sediment fuel cell[J]. Applied and Environmental Microbiology, 2004,70(10):6023-6030.
    doi: 10.1128/AEM.70.10.6023-6030.2004 pmid: 15466546
    [33] HOLMES D E, BOND D R, LOVLEY D R, et al. Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ)and graphite electrodes[J]. Applied and Environmental Microbiology, 2004,70(2):1234-1237.
    doi: 10.1128/aem.70.2.1234-1237.2004 pmid: 14766612
    [34] FEDOROVICH V, KNIGHTON M C, PAGALING E, et al. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri,isolated from a microbial fuel cell[J]. Applied and Environmental Microbiology, 2009,75(23):7326-7334.
    pmid: 19801475
    [35] NIESSEN J, SCHRODER U, SCHOLZ F, et al. Exploiting complex carbohydrates for microbial electricity generation:a bacterial fuel cell operating on starch[J]. Electrochemistry Communications, 2004,6(9):955-958.
    [36] SAYED E T, TSUJIGUCHI T, NAKAGAWA N, et al. Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell[J]. Bioelectrochemistry, 2012,86:97-101.
    pmid: 22357359
    [37] PRASAD D, ARUN S, MURUGESAN A, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors & Bioelectronics, 2007,22(11):2604-2610.
    doi: 10.1016/j.bios.2006.10.028 pmid: 17129722
    [38] YANG Y, XU M, GUO J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems[J]. Process Biochemistry, 2012,47(12):1707-1714.
    [39] SHI L, SQUIER T C, ZACHARA J M, et al. Respiration of metal(hydr)oxides by Shewanella and Geobacter:a key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2007,65(1):12-20
    [40] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005,435:1098-1101.
    doi: 10.1038/nature03661 pmid: 15973408
    [41] CHENG S A, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007,9(3):492-496.
    [42] SAITO T, MEHANNA M, WANG X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technologyogy, 2011,102(1):395-398.
    [43] HOU J, LIU Z, ZHANG P, et al. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013,224:139-144.
    [44] YUAN Y, ZHOU S, ZHAO B, et al. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells[J]. Bioresource Technology, 2012,116:453-458.
    [45] CAI T, HUANG M, HUANG Y, et al. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode[J]. International Journal of Hydrogen Energy, 2018,44(5):3088-3098.
    [46] ZHAO N, MA Z, SONG H, et al. Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell[J]. Electrochimica Acta, 2019,296:69-74.
    [47] LIU H, CHENG S A, LOGAN B E, et al. Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature,and reactor configuration[J]. Environmental Science & Technology, 2005,39(14):5488-5493.
    pmid: 16082985
    [48] BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002,295(5554):483-485.
    pmid: 11799240
    [49] PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering, 2003,81(3):348-355.
    [50] AHN Y, LOGAN B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresource Technology, 2010,101(2):469-475.
    [51] LOGAN B E, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007,41(9):3341-3346.
    [52] DEWAN A, BEYENAL H, LEWANDOWSKI Z, et al. Scaling up microbial fuel cells[J]. Environmental Science & Technology, 2008,42(20):643-648.
    [53] WANG X, FENG Y J, LEE H, et al. Electricity production from beer brewery wastewater using single chamber microbial fuel cell[J]. Water Science and Technology, 2008,57(7):1117-1121.
    doi: 10.2166/wst.2008.064 pmid: 18441441
    [54] HOU J, LIU Z, ZHANG P, et al. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013,224:139-144.
    doi: 10.1016/j.jpowsour.2012.09.091
    [55] XIAO L, DAMIEN J, LUO J, et al. Crumpled graphene particles for microbial fuel cell electrodes[J]. Journal of Power Sources, 2012,208:187-192.
    doi: 10.1016/j.jpowsour.2012.02.036
    [56] HOU J, LIU Z, LI Y, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015,38(5):881-888.
    doi: 10.1007/s00449-014-1332-0 pmid: 25428842
    [57] JUNG S, REGAN J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors[J]. Applied Microbiology and Biotechnology, 2007,77(2):393-402.
    [58] LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water Research, 2005,39(5):942-952.
    doi: 10.1016/j.watres.2004.11.019 pmid: 15743641
    [59] GUO W, CUI Y, SONG H, et al. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal[J]. Bioprocess and Biosystems Engineering, 2014,37(9):1749-1758.
    pmid: 24535080
    [60] KIM K Y, YANG W L, EVANS P J, et al. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells[J]. Bioresource Technology, 2016,221:96-101.
    pmid: 27639229
    [61] CHEN C Y, CHEN T Y, CHUNG Y C, et al. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes[J]. Environmental Technology, 2014,35(3):286-293.
    [62] AELTERMAN P, VERSICHELE M, MARZORATI M, et al. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes[J]. Bioresource Technology, 2008,99(18):8895-8902.
    doi: 10.1016/j.biortech.2008.04.061 pmid: 18524577
    [63] HE Z, MINTEER S D. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science & Technology, 2005,39(14):5262-5267.
    doi: 10.1021/es0502876 pmid: 16082955
    [64] GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003,18(4):327-334.
    doi: 10.1016/s0956-5663(02)00110-0 pmid: 12604249
    [65] PHAM T H, JANG J K, CHANG I S, et al. Improvement of cathode reaction of a mediatorless microbial fuel cell[J]. Journal of Microbiology and Biotechnology, 2004,14(2):324-329.
    [66] OH S, MIN B, LOGAN B E, et al. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science & Technology, 2004,38(18):4900-4904.
    doi: 10.1021/es049422p pmid: 15487802
    [67] LOGAN B E, REGAN J M. Microbial fuel cells:challenges and applications[J]. Environmental Science & Technology, 2006,40(17):5172-5180.
    [68] ter HEIJINE A, HAMELERS H V M, de WILDE V, et al. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells[J]. Environmental Science & Technology, 2006,40(17):5200-5205.
    doi: 10.1021/es0608545 pmid: 16999089
    [69] MORRIS J M, JIN S, WANG J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007,9(7):1730-1734.
    [70] ZHAO F, HARNISCH F, SCHRORDER U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental Science & Technology, 2006,40(17):5193-5199.
    doi: 10.1021/es060332p pmid: 16999088
    [71] ZHAO F, HARNISCH F, SCHRODER U, et al. Application of pyrolysed iron (Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells[J]. Electrochemistry Communications, 2005,7(12):1405-1410.
    [72] HE Z, ANGENENT L T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006,18(19/20):2009-2015.
    [73] BERGEL A, FERON D, MOLLICA A, et al. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm[J]. Electrochemistry Communications, 2005,7(9):900-904.
    [74] GREGORY K B, BOND D R, LOVLEY D R, et al. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004,6(6):596-604.
    doi: 10.1111/j.1462-2920.2004.00593.x pmid: 15142248
    [75] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology, 2010,85(6):1665-1671.
    doi: 10.1007/s00253-009-2378-9 pmid: 20013119
    [76] BLANCHET E, ERABLE B, de SOLAN M L, et al. Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with foodwaste[J]. Electrochemistry Communications, 2016,66:38-41.
    [77] ZHANG Y, MO G, LI X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011,196(13):5402-5407.
    [78] PENG L, YOU S J, WANG J Y, et al. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J]. Biosensors & Bioelectronics, 2010,25(5):1248-1251.
    doi: 10.1016/j.bios.2009.10.002 pmid: 19897352
    [79] MIN B K, CHENG S A, LOGAN B S, et al. Electricity generation using membrane and salt bridge microbial fuel cell[J]. Water Research, 2005,39(9):1675-1686.
    [80] RHOAD A N. A microbial fuel cell using biomineralized manganese oxides as a cathodic reactant[J]. Montana:Montana State University, 2005,39(12):4666-4671.
    [81] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Technology, 2006,40(17):5181-5192.
    doi: 10.1021/es0605016 pmid: 16999087
    [82] KIM J R, CHENG S, OH S E, et al. Power generation using different cation,anion,and ultrafiltration membrances in mircrobial fuel cells[J]. Environmental Science & Technology, 2007,41(3):1004-1009.
    [83] HE Z, WAGNER N, MINTEER S D, et al. An upflow microbial fuel cell with an interior cathode:assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology, 2006,40(17):5212-5217.
    doi: 10.1021/es060394f pmid: 16999091
    [84] RINGEISEN B R, HENDERSON E, WU P K, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10[J]. Environmental Science & Technology, 2006,40(17):2629-2634.
    [85] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004,38(14):4040-4046.
    doi: 10.1021/es0499344 pmid: 15298217
    [86] PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering, 2003,81(3):348-355.
    [87] LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009,7(5):375-381.
    doi: 10.1038/nrmicro2113 pmid: 19330018
    [88] OH S E, LOGAN B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2006,70(2):162-169.
    doi: 10.1007/s00253-005-0066-y pmid: 16167143
    [89] HARNISCH F, SCHRODER U, SCHOLZ F, et al. The suitability of monopolar and bipolarion exchange membranes as separators for biological fuel cells[J]. Environmental Science & Technology, 2008,42(5):1740-1746.
    doi: 10.1021/es702224a pmid: 18441829
    [90] IEROPOULOS I, GREENMAN J, MELLUISH C, et al. Improved energy output levels from small-scale microbial fuel cells[J]. Bioelectrochemistry, 2010,78(1):44-50.
    doi: 10.1016/j.bioelechem.2009.05.009 pmid: 19540172
    [91] ELMEKAWY A, HEGAB H M, DOMINGUEZ-BENETTON X, et al. Internal resistance of microfluidic microbial fuel cell:challenges and potential opportunities[J]. Bioresource Technology, 2013,142:672-682.
    pmid: 23747174
    [92] KIM B H, CHANG I S, GADD G M, et al. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007,76(3):485-494.
    doi: 10.1007/s00253-007-1027-4 pmid: 17593364
    [93] ZUO Y, CHENG S, LOGAN B E, et al. Ion exchange membrane cathodes for scalable microbial fuel cells[J]. Environmental Science & Technology, 2008,42(18):6967-6972.
    doi: 10.1021/es801055r pmid: 18853817
    [94] CORNELISSEN E R, HARMSEN D, KORTE K F, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. Journal of Membrane Science, 2008,319(1/2):158-168.
    [95] ZHANG F, BRASTAD K S, HE Z, et al. Integrating forward osmosis into microbial fuel cells for wastewater treatment,water extraction and bioelectricity generation[J]. Environmental Science & Technology, 2011,45(15):6690-6696.
    doi: 10.1021/es201505t pmid: 21751820
    [96] WERNER C M, LOGAN B E, SAIKALY P E, et al. Wastewater treatment,energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell[J]. Journal of Membrane Science, 2013,428:116-122.
    [97] MISKAN M, ISMAIL M, GHASEMI M, et al. Characterization of membrane biofouling and its effect on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016,41(1):543.
  • 加载中
计量
  • 文章访问数:  337
  • HTML全文浏览量:  107
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-04
  • 刊出日期:  2021-03-20

目录

    /

    返回文章
    返回