Research on engineering application of stabilization technology for arsenic contaminated site soil
-
摘要: 基于3种砷污染水平的场地土壤(WSL、WSX及FZ)进行稳定化小试试验,比较FeⅡ/Mg复配型(F2M)、Ca/Fe复配型(CF)及MetaPro©-ani(As)系列修复材料(MPA)对土壤中砷污染的稳定化效果,进一步分析了修复材料用量对稳定化效果的影响,并选择稳定化效果较优的材料进行工程化施工验证(基于FZS土壤样品),WSL、WSX、FZ及FZS土壤样品的砷污染程度依次为FZ>FZS>WSX>WSL。结果表明:对于低/中浓度砷污染土壤样品WSL和WSX,F2M和CF复配型修复材料在较低投加比条件下可达到较好的稳定化效果;对于高浓度砷污染土壤样品FZ,MPA系列修复材料的稳定化效果明显优于前2种复配型修复材料;对于高浓度砷污染土壤实际施工样品FZS,MPA系列修复材料在开放性施工条件下,可达到较理想的稳定化效果,其中,以MPA-Ⅰ型材料修复效果最佳。Abstract: Based on the batch stabilization experiments upon arsenic (As) contaminated soil samples with three concentration levels (WSL, WSX, and FZ), As stabilization performance of FeⅡ/Mg compound-typed (F2M), Ca/Fe compound-typed (CF), and MetaPro©-ani(As) typed (MPA) stabilizers were tested, and the effect of stabilizer dosage on stabilization performance were further analyzed. The materials with better stabilization effects were selected for engineering construction verification (based on FZS soil sample). The As leaching concentrations of WSL, WSX, FZ, and FZS soil samples turned to be: FZ > FZS > WSX > WSL. The results showed that: for WSL and WSX soil samples with low/medium concentration, F2M and CF typed stabilizers presented good remediation performance with low dosages; for FZ soil samples with high concentration, MPA series stabilizers showed much better stabilization performance than the former two composite ones; for the actual construction samples of FZS soil samples with high concentration, MPA series stabilizers achieved ideal stabilization effect under the open condition, with the best performance of MPA-Ⅰ typed stabilizer.
-
Key words:
- arsenic pollution /
- soil /
- stabilization /
- materials /
- engineering application
-
[1] 张坤, 钱建平, 张璇. 土壤砷污染研究及修复综述[J]. 环境保护与循环经济, 2020, 40(2):46-51. [2] 张磊, 潘子安. 废水中砷的处理技术研究进展[J]. 广东化工, 2019, 46(16):126.ZHANG L, PAN Z A. Research progress in treatment of arsenic in wastewater[J]. Guangdong Chemical Industry, 2019, 46(16):126. [3] TONG H, LIU C S, HAO L K, et al. Biological Fe(Ⅱ) and As(Ⅲ) oxidation immobilizes arsenic in micro-oxic environments[J]. Geochimica et Cosmochimica Acta, 2019, 265:96-108.
doi: 10.1016/j.gca.2019.09.002[4] TYROVOLA K, NIKOLAIDIS N P. Arsenic mobility and stabilization in topsoils[J]. Water Research, 2009, 43(6):1589-1596.
doi: 10.1016/j.watres.2009.01.001[5] YAN X L, FEI Y, ZHONG L R, et al. Arsenic stabilization performance of a novel starch-modified Fe-Mn binary oxide colloid[J]. Science of the Total Environment, 2020, 707:136064.
doi: 10.1016/j.scitotenv.2019.136064[6] YUE T, NIU Z, HU Y H, et al. Arsenic(Ⅴ)adsorption on ferric oxyhydroxide gel at high alkalinity for securely recycling of arsenic-bearing copper slag[J]. Applied Surface Science, 2019, 478:213-220.
doi: 10.1016/j.apsusc.2019.01.249[7] 唐彬, 邱亚群, 胡立琼, 等. 含铁材料修复砷污染土壤的研究进展[J]. 安徽农业科学, 2014, 42(12):3692-3695.TANG B, QIU Y Q, HU L Q, et al. Research advances of remedying arsenic-contaminated soil by iron-containing material[J]. Journal of Anhui Agriculture Science, 2014, 42(12):3692-3695. [8] 王春彦, 贾彦龙, 孙嘉龙, 等. 土壤砷生物有效性及其调控措施研究进展[J]. 环保科技, 2019, 25(6):55-64.WANG C Y, JIA Y L, SUN J L, et al. Advances on bioavailability of arsenic and its regulation in soil[J]. Environmental Protection and Technology, 2019, 25(6):55-64. [9] 童非, 谢玉峰, 张振华, 等. 砷污染土壤原位钝化材料修复效果及机制的研究进展[J]. 江苏农业科学, 2019, 47(22):6-11. [10] HOU Q X, HAN D Y, ZHANG Y, et al. The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials:a long-term experiment[J]. Ecotoxicology and Environmental Safety, 2020, 191:110210.
doi: 10.1016/j.ecoenv.2020.110210[11] 安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2):234-246.AN L H, LIU M C, ZHANG J Q, et al. Sources of arsenic in soil and affecting factors of migration and release:a review[J]. Soils, 2020, 52(2):234-246. [12] 金艳, 徐晔, 王娟, 等. 土壤中砷的污染控制技术研究[J]. 四川环境, 2014, 33(3):162-166.JIN Y, XU Y, WANG J, et al. The control technology of arsenic-contaminated soil[J]. Sichuan Environment, 2014, 33(3):162-166. [13] 罗婷, 孙健雄, 夏科. 土壤砷污染研究综述[J]. 环境与发展, 2017, 29(8):11-12.LUO T, SUN J X, XIA K. A research review of arsenic pollution in soil[J]. Environment Development, 2017, 29(8):11-12. [14] 张子叶, 谢运河, 刘昭兵, 等. Fe对土壤As活性的影响及作用机理研究进展[J]. 湖南农业科学, 2019(6):110-114.ZHANG Z Y, XIE Y H, LIU Z B, et al. Research progress on the effect and mechanism of Fe on soil As activity[J]. Hunan Agricultural Sciences, 2019(6):110-114. [15] 吴和秋, 侯钦宣, 张英. 含铁介质用于修复砷污染土壤研究综述[J]. 中国土壤与肥料, 2018(2):13-21.WU H Q, HOU Q X, ZHANG Y. Review of remedying the arsenic-contaminated soil with Fe-based media[J]. Soil and Fertilizer Sciences in China, 2018(2):13-21. [16] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1):90-99.JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology, 2016, 6(1):90-99. [17] ANEMANA T, ÓVÁRI M, VARGA M, et al. Granular activated charcoal from peanut (Arachis hypogea) shell as a new candidate for stabilization of arsenic in soil[J]. Microchemical Journal, 2019, 149:104030.
doi: 10.1016/j.microc.2019.104030[18] WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment[J]. Science of the Total Environment, 2019, 668:32-39.
doi: 10.1016/j.scitotenv.2019.02.289[19] DERAKHSHAN N D, KIM J W, JUNG M C. Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation[J]. Geosciences Journal, 2017, 21(3):385-396.
doi: 10.1007/s12303-016-0059-0[20] CAMACHO J, WEE H Y, KRAMER T A, et al. Arsenic stabilization on water treatment residuals by calcium addition[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):599-603.
doi: 10.1016/j.jhazmat.2008.10.038[21] 李群, 周艳, 张胜田, 等. 红壤对污染土壤中砷的修复性能研究[J]. 南京师范大学学报(工程技术版), 2020, 20(1):76-83.LI Q, ZHOU Y, ZHANG S T, et al. Remediation effects of arsenic-contaminated soil by red soil[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2020, 20(1):76-83.
点击查看大图
计量
- 文章访问数: 575
- HTML全文浏览量: 193
- PDF下载量: 102
- 被引次数: 0