留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国橡胶制品行业VOCs末端减排技术评估

田羽 方刚 周长波 张一心

田羽, 方刚, 周长波, 张一心. 我国橡胶制品行业VOCs末端减排技术评估[J]. 环境工程技术学报, 2021, 11(4): 797-806. doi: 10.12153/j.issn.1674-991X.20200227
引用本文: 田羽, 方刚, 周长波, 张一心. 我国橡胶制品行业VOCs末端减排技术评估[J]. 环境工程技术学报, 2021, 11(4): 797-806. doi: 10.12153/j.issn.1674-991X.20200227
TIAN Yu, FANG Gang, ZHOU Changbo, ZHANG Yixin. Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 797-806. doi: 10.12153/j.issn.1674-991X.20200227
Citation: TIAN Yu, FANG Gang, ZHOU Changbo, ZHANG Yixin. Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 797-806. doi: 10.12153/j.issn.1674-991X.20200227

我国橡胶制品行业VOCs末端减排技术评估

doi: 10.12153/j.issn.1674-991X.20200227
详细信息
    作者简介:

    田羽(1994—),女,硕士研究生,主要研究方向为环境规划与管理, luckytianyumao@163.com

    通讯作者:

    方刚 E-mail: fanggang@craes.org.cn

    张一心 E-mail: heartchang@126.com

  • 中图分类号: X322

Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China

More Information
    Corresponding author: FANG Gang E-mail: fanggang@craes.org.cn; ZHANG Yixin E-mail: heartchang@126.com
  • 摘要: 橡胶制品行业生产过程中炼胶、压延和硫化等工艺都会产生含挥发性有机物(VOCs)废气,其排放量大,非甲烷总烃含量高,会对周边环境造成严重污染,因此,急需针对橡胶制品行业VOCs的排放进行有效控制。然而,目前针对橡胶制品行业VOCs减排技术评估尚不完善,无法确切了解VOCs末端减排技术的效益。通过分析橡胶制品行业VOCs的产排污环节、排放特征,调研不同末端减排技术的应用现状,以技术性能、经济效益、资源能源、环境污染为一级指标,构建橡胶制品行业VOCs末端减排技术评估指标体系,采用模糊综合评估法对VOCs末端减排技术进行评估,旨在筛选出最佳可行的VOCs末端减排技术,为橡胶制品行业VOCs减排提供评估依据与技术支持。结果表明:碳纤维吸附脱附法具有良好的减排综合性能,是橡胶制品行业最佳可行的VOCs末端减排技术。

     

  • [1] 赵振丰. 天然橡胶中不溶性硫黄喷霜性预测及分散性研究[D]. 青岛:青岛科技大学, 2018.
    [2] 赵忠林, 郑光, 吴江, 等. 低温等离子体对几种常见挥发性有机物的净化性能研究[J]. 职业卫生与应急救援, 2019, 37(2):188-191.

    ZHAO Z L, ZHENG G, WU J, et al. Study on purification of volatile organic compounds with non-thermal plasma[J]. Occupational Health and Emergency Rescue, 2019, 37(2):188-191.
    [3] YE M Q, SUN J Y, HUANG S H. Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model[J]. Environmental Engineering Research, 2019, 24(4):559-565.
    doi: 10.4491/eer.2018.344
    [4] 张建萍, 陈哲铭, 林函, 等. 橡胶硫化烟气的组分和污染控制探讨[J]. 橡塑技术与装备, 2015, 41(7):52-57.

    ZHANG J P, CHEN Z M, LIN H, et al. Discussion of the component and rubber vulcanization flue gas pollution control[J]. China Rubber/Plastics Technology and Equipment, 2015, 41(7):52-57.
    [5] 马咏梅. 典型挥发性有机物与OH、NO3自由基反应的机理研究[D]. 西安:西北工业大学, 2018.
    [6] 谢绍东, 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J]. 化学进展, 2010, 22(4):727-733.

    XIE S D, TIAN X X. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J]. Progress in Chemistry, 2010, 22(4):727-733.
    [7] 陈颖, 李丽娜, 杨常青, 等. 我国VOC类有毒空气污染物优先控制对策探讨[J]. 环境科学, 2011, 32(12):3469-3475.

    CHEN Y, LI L N, YANG C Q, et al. Countermeasures for priority control of toxic VOC pollution[J]. Environmental Science, 2011, 32(12):3469-3475.
    [8] 万祥. 论企业实施清洁生产的自身必要性及对环境保护的重要意义[J]. 中国战略新兴产业, 2020(32):143.
    [9] 李玲玲, 辛国兴. 工程橡胶行业炼胶废气治理技术探究[J]. 橡塑技术与装备, 2015, 41(20):129-130.

    LI L L, XIN G X. Mixing emissions control technology of engineering rubber industry[J]. China Rubber/Plastics Technology and Equipment, 2015, 41(20):129-130.
    [10] 本刊编辑部. 橡胶行业被列入国家挥发性有机物削减行动计划重点行业[J]. 橡胶科技, 2016, 14(9):45.
    [11] 王卉, 渠毅. 中国涂料行业VOC污染控制政策法规研究及国内外相关法规对比分析[J]. 现代涂料与涂装, 2016, 19(12):28-31.

    WANG H, QU Y. Study of China regulations and policies on VOC control in coating industry and analysis comparing with other countries[J]. Modern Paint & Finishing, 2016, 19(12):28-31.
    [12] 谢元博, 李巍. 基于能源消费情景模拟的北京市主要大气污染物和温室气体协同减排研究[J]. 环境科学, 2013, 34(5):2057-2064.
    doi: 10.1021/es991132z

    XIE Y B, LI W. Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing[J]. Environmental Science, 2013, 34(5):2057-2064. doi: 10.1021/es991132z
    [13] 杨报军, 和军强. 降VOC环保策略与控制[J]. 汽车实用技术, 2018(15):229-231.

    YANG B J, HE J Q. Environmental protection strategy and control of VOC reduction[J]. Automobile Applied Technology, 2018(15):229-231.
    [14] 阿克木·吾马尔, 蔡思翌, 赵斌, 等. 油品储运行业挥发性有机物排放控制技术评估[J]. 化工环保, 2015, 35(1):64-68.

    AKEMU W, CAI S Y, ZHAO B, et al. Comprehensive evaluation of volatile organic compounds control technologies for oil storage and transportation[J]. Environmental Protection of Chemical Industry, 2015, 35(1):64-68.
    [15] 赵鲁华, 王劭然, 王振. 室内挥发性有机物(VOCs)污染特征与控制技术探讨[J]. 环境与发展, 2016, 28(4):45-48.

    ZHAO L H, WANG S R, WANG Z. Pollution characteristics and control technology for indoor volatile organic compounds(VOCs)[J]. Environment and Development, 2016, 28(4):45-48.
    [16] 薛鹏丽, 张佟佟, 孙晓峰. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境与可持续发展, 2019, 44(2):79-82.

    XUE P L, ZHANG T T, SUN X F. Evaluation and selection of VOCs treatment technologies in packaging and printing industry[J]. Environment and Sustainable Development, 2019, 44(2):79-82.
    [17] 李佳羽, 刘利民, 韩建华, 等. 典型化工园区VOCs排放控制技术的评价[J]. 化工进展, 2016, 35(4):1250-1256.

    LI J Y, LIU L M, HAN J H, et al. Evaluation of VOCs emission control technologies in typical chemical industry park[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1250-1256.
    [18] 刘惠青. 挥发性有机废气治理技术发展研究[J]. 环境与发展, 2019, 31(8):30-31.

    LIU H Q. Research on the development of volatile organic waste gas treatment technology[J]. Environment and Development, 2019, 31(8):30-31.
    [19] 陈晓博, 韩小勇, 杨昌辉, 等. 合成橡胶装置挥发性有机物排放治理措施[J]. 橡胶科技, 2020, 18(1):37-43.

    CHEN X B, HAN X Y, YANG C H, et al. Control measures of volatile organic compounds emission in synthetic rubber plant[J]. Rubber Science and Technology, 2020, 18(1):37-43.
    [20] 关丽萍. 挥发性有机物(VOCs)末端控制技术实践与发展综述[J]. 现代化工, 2018, 38(9):64-67.

    GUAN L P. Review on practice and development of terminal control techniques for volatile organic compounds[J]. Modern Chemical Industry, 2018, 38(9):64-67.
    [21] 王浩, 袁进, 解磊, 等. 再生橡胶生产排放的大气污染物特征研究[J]. 橡胶工业, 2019, 66(10):790-794.

    WANG H, YUAN J, XIE L, et al. Study on characteristics of atmospheric pollutant emitted from reclaimed rubber production[J]. China Rubber Industry, 2019, 66(10):790-794.
    [22] 吕庆志, 曾小岚, 朱天乐, 等. 大气污染控制技术评价方法研究[J]. 环境科学与技术, 2017, 40(7):188-192.
    doi: 10.1021/es051163w

    LÜ Q Z, ZENG X L, ZHU T L, et al. Method for evaluation of air pollution control technologies[J]. Environmental Science & Technology, 2017, 40(7):188-192. doi: 10.1021/es051163w
    [23] 蒋卉. 挥发性有机物的控制技术及其发展[J]. 资源开发与市场, 2006, 22(4):315-317.

    JIANG H. Control technology and development of volatile organic compounds[J]. Resource Development & Market, 2006, 22(4):315-317.
    [24] WU H, YAN H Y, QUAN Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management, 2018, 222:409-419.
    doi: 10.1016/j.jenvman.2018.06.001
    [25] BELAISSAOUI B, le MOULLEC Y, FAVRE E. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air:a generic approach[J]. Energy, 2016, 95:291-302.
    doi: 10.1016/j.energy.2015.12.006
    [26] 王大汇, 于增利. 膜分离技术在石油化工领域的应用[J]. 中国化工贸易, 2018, 10(10):135.
    [27] BEAUCHET R, MAGNOUX P, MIJOIN J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts[J]. Catalysis Today, 2007, 124(3/4):118-123.
    doi: 10.1016/j.cattod.2007.03.030
    [28] 董宇. 挥发性有机物常用治理技术及其比较[J]. 低碳世界, 2020, 10(5):34-35.
    [29] 宋早明. 挥发性有机物末端治理技术及选型方法[J]. 环境与发展, 2020, 32(9):84-86.

    SONG Z M. End treatment technology and selection method of volatile organic compounds[J]. Environment and Development, 2020, 32(9):84-86.
    [30] 杨连珍. 光催化技术在挥发性有机物治理中的应用研究[J]. 资源节约与环保, 2018(8):127.
    [31] 赵恒, 张学军, 宋忠贤, 等. 挥发性有机物治理技术研究进展[J]. 石油化工, 2019, 48(3):318-325.

    ZHAO H, ZHANG X J, SONG Z X, et al. Advances in elimination of volatile organic compounds[J]. Petrochemical Technology, 2019, 48(3):318-325.
    [32] SHU Y J, XU Y, HUANG H B, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation[J]. Chemosphere, 2018, 208:550-558.
    doi: 10.1016/j.chemosphere.2018.06.011
    [33] 董霓, 林艳军, 崔玉东. 治理VOCs的新工艺:沸石转轮吸附浓缩+催化燃烧[J]. 环境与发展, 2017, 29(7):118-119.

    DONG N, LIN Y J, CUI Y D. A new process for controlling VOCs-zeolite runner adsorption concentration + catalytic combustion[J]. Environment and Development, 2017, 29(7):118-119.
    [34] 巩远辉, 王燕, 蔡旺锋, 等. 吸附浓缩-蓄热催化燃烧工艺过程研究[J]. 现代化工, 2019, 39(5):202-206.

    GONG Y H, WANG Y, CAI W F, et al. Study on adsorption concentration-regenerative catalytic combustion process[J]. Modern Chemical Industry, 2019, 39(5):202-206.
    [35] 王龙妹, 孙翰林, 胡玢, 等. 挥发性有机废气治理技术的研究现状及进展[J]. 合成材料老化与应用, 2018, 47(6):98-104.

    WANG L M, SUN H L, HU B, et al. Research status and progress of volatile organic compounds treatment technology[J]. Synthetic Materials Aging and Application, 2018, 47(6):98-104.
    [36] ZHANG M M, YANG W W. Fuzzy comprehensive evaluation method applied in the real estate investment risks research[J]. Physics Procedia, 2012, 24:1815-1821.
    doi: 10.1016/j.phpro.2012.02.267
    [37] 余良武, 刘东风, 房友龙, 等. 基于熵权法的液压液污染度模糊综合评价[J]. 液压与气动, 2018(2):63-67.

    YU L W, LIU D F, FANG Y L, et al. Fuzzy comprehensive evaluation based on entropy weight method for hydraulic fluid contamination level[J]. Chinese Hydraulics & Pneumatics, 2018(2):63-67.
    [38] 李沂濛, 吕立杰. 基于模糊综合评判的英语教材评价指标体系的建立[J]. 河北北方学院学报(社会科学版), 2014, 30(1):98-102.

    LI Y M, LÜ L J. Establishment of evaluation index system of English textbook based on fuzzy comprehensive evaluation[J]. Journal of Hebei North University (Social Science Edition), 2014, 30(1):98-102.
    [39] 刘洪波, 李玲君, 蒋博龄, 等. 模糊综合评价法在工业园区末端水处理技术评估中的应用[J]. 环境污染与防治, 2017, 39(6):644-648.

    LIU H B, LI L J, JIANG B L, et al. Application of fuzzy comprehensive evaluation method for terminal water treatment technology in the industrial park[J]. Environmental Pollution & Control, 2017, 39(6):644-648.
    [40] TURAN N G, MESCI B, OZGONENEL O. The use of artificial neural networks (ANN) for modeling of adsorption of Cu(Ⅱ) from industrial leachate by pumice[J]. Chemical Engineering Journal, 2011, 171(3):1091-1097.
    doi: 10.1016/j.cej.2011.05.005
    [41] 温国强. 棉印染行业清洁生产指标体系的建立与应用[J]. 广东化工, 2017, 44(21):123-126.

    WEN G Q. Establishment and application of cleaner production assessment index system of cotton printing and dyeing industry[J]. Guangdong Chemical Industry, 2017, 44(21):123-126.
    [42] 陆阳. 铜冶炼行业清洁生产评价指标体系研究[D]. 武汉:武汉工程大学, 2017.
    [43] 陈雨. D企业镀铬生产线清洁生产评价研究[D]. 成都:西南交通大学, 2019.
    [44] 邓慧, 廖学品. 制革工业废水环境影响评价[J]. 中国皮革, 2013, 42(21):52-54.

    DENG H, LIAO X P. Environmental influence evaluation of leather-making industry wastewater[J]. China Leather, 2013, 42(21):52-54.
    [45] 魏可. 六类化学纤维行业清洁生产评价指标体系发布[J]. 人造纤维, 2019, 49(1):40.
    [46] 刘富立. 煤炭企业再生资源回收利用体系构建与评价研究[D]. 天津:天津理工大学, 2011.
    [47] 董君. 层次分析法权重计算方法分析及其应用研究[J]. 科技资讯, 2015, 13(29):218.
    [48] 任岩军, 张铮, 何京东, 等. 我国燃煤电厂大气汞控制技术综合评估与对策探讨[J]. 环境科学研究, 2020, 33(4):841-848.

    REN Y J, ZHANG Z, HE J D, et al. Comprehensive evaluation and countermeasures of atmospheric mercury pollution control technology in coal-fired power plants[J]. Research of Environmental Sciences, 2020, 33(4):841-848.
    [49] ZHU Q H, TINA D J, MENG F, et al. Using a Delphi method and the analytic hierarchy process to evaluate Chinese search engines[J]. Online Information Review, 2011, 35(6):942-956.
    doi: 10.1108/14684521111193210
    [50] SONG Y, CHEN Z, ZHANG S K, et al. Comprehensive evaluation system of occupational hazard prevention and control in iron and steel enterprises based on a modified Delphi technique[J]. International Journal of Environmental Research and Public Health, 2020, 17(2):667.
    doi: 10.3390/ijerph17020667
    [51] XU A, ZHANG J C. Comprehensive evaluation model of livable city based on fuzzy comprehensive evaluation method[J]. Asian Agricultural Research, 2018(4):65-66.
    [52] 孙建梅, 李龙龙. 基于定量与定性相结合的电网低碳评价方法研究[J]. 科技管理研究, 2019, 39(1):242-248.

    SUN J M, LI L L. Research on low carbon evaluation method of power grid based on combination of quantitative and qualitative analysis[J]. Science and Technology Management Research, 2019, 39(1):242-248.
    [53] WANG W Q, BI Y G, SHEN X H. Application of fuzzy comprehensive evaluation method based on AHP in product materials[J]. IOP Conference Series:Materials Science and Engineering, 2019, 612:032164.
    doi: 10.1088/1757-899X/612/3/032164
    [54] 李宏艳, 董军, 杨善林. 企业信息化模糊综合评估指标体系与方法研究[J]. 合肥工业大学学报(自然科学版), 2004, 27(6):592-596.

    LI H Y, DONG J, YANG S L. Research on fuzzy comprehensive evaluation index system of enterprise informatization[J]. Journal of Hefei University of Technology (Natural Science), 2004, 27(6):592-596.
    [55] 王丽丽. 模糊数学法结合层次分析法用于清洁生产潜力评估研究[D]. 重庆:重庆大学, 2010.
    [56] 郭俊. 基于层次分析法和模糊数学法的木薯淀粉行业清洁生产潜力评估研究[D]. 南宁:广西大学, 2016.
    [57] GORAI A K, UPADHYAY K A, et al. Design of fuzzy synthetic evaluation model for air quality assessment[J]. Environment Systems and Decisions, 2014, 34(3):456-469.
    doi: 10.1007/s10669-014-9505-6
  • 加载中
计量
  • 文章访问数:  315
  • HTML全文浏览量:  60
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回