Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant
-
摘要: 土壤中微生物在多环芳烃(PAHs)的降解过程中起着重要作用。以华北某焦化厂土壤为研究对象,在5个采样点(每个点分6层)采集30个土壤样品,分析土壤环境因子(理化性质和PAHs浓度)、微生物丰度及群落结构,探讨土壤中微生物组成与环境因子间的关系。结果表明:土壤中细菌丰度为5.33~8.89,与土壤深度呈显著负相关(P<0.01),与土壤PAHs、有机碳、全氮浓度呈正相关(P<0.05);土壤中优势细菌类群(门)为变形菌门(Proteobacteria),其相对丰度占比最高达90%,其次是绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和酸杆菌门(Acidobacteria),其占门水平分类细菌数量的64%~97%;细菌类群与环境因子冗余分析表明,焦化厂土壤中细菌群落结构特征是PAHs污染和环境因子共同作用的结果,其中土壤pH与速效钾、PAHs、全氮浓度对土壤细菌群落组成影响明显,PAHs潜在降解菌Proteobacteria丰度与PAHs、全氮、有效磷、速效钾、有机碳浓度呈正相关。Abstract: Soil microorganism plays an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs). Taking the soil of a coking plant in North China as the research object, 30 soil samples were collected at 5 sampling sites (each site was divided into 6 layers). Soil environmental factors (physical and chemical properties and PAHs concentration), microbial abundance and community structure were analyzed, and the relationship between soil microbial composition and soil environmental factors was discussed. The results showed that the abundance of bacteria in soil ranged from 5.33 to 8.89, which was significantly negatively correlated with soil depth (P<0.01), and positively correlated with soil PAHs, organic carbon and total nitrogen concentrations (P<0.05). The dominant bacteria group (phyla) in the soil was Proteobacteria, whose relative abundance accounted for up to 90%, followed by Chloroflexi, Actinobacteria, Firmicutes and Acidobacteria, which accounted for 64%-97% of the bacteria in the level classification of phyla. Redundancy analysis of bacteria groups and environmental factors showed that the soil bacterial community structure in the coking plant was the result of the combination of PAHs pollution and environmental factors. Soil pH, available potassium, PAHs and total nitrogen content had the most obvious effects on soil bacterial community composition. Abundance of Proteobacteria (a potential PAHs degrading bacterium) was positively correlated with PAHs, total nitrogen, available phosphorus, available potassium and organic carbon content.
-
Key words:
- PAHs /
- contaminated soil /
- soil environmental factors /
- bacterial abundance /
- community structure
-
[1] 麻俊胜, 苟雅玲, 王兴润, 等. 化学氧化后深层土壤中多环芳烃的缺氧微生物降解[J]. 环境工程技术学报, 2020, 10(1):97-104.MA J S, GOU Y L, WANG X R, et al. Anoxic biodegradation ofpolycyclic aromatic hydrocarbons(PAHs)in aged deep soil pretreated with chemical oxidation[J]. Journal of Environmental Engineering Technology, 2020, 10(1):97-104. [2] 王硕, 魏文侠, 李佳斌, 等. 某钢铁厂土壤中多环芳烃污染评价与风险评估[J]. 环境工程技术学报, 2019, 9(4):447-452.WANG S, WEI W X, LI J B, et al. Evaluation and risk assessment of polycyclic aromatic hydrocarbons in soil of a steel plant[J]. Journal of Environmental Engineering Technology, 2019, 9(4):447-452. [3] KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints,emerging trends and future directions[J]. Chemosphere, 2017, 168:944-968.
doi: 10.1016/j.chemosphere.2016.10.115[4] CAO W, YIN L Q, ZHANG D, et al. Contamination,sources,and health risks associated with soil PAHs in rebuilt land from a coking plant,Beijing,China[J]. International Journal of Environmental Research and Public Health, 2019, 16(4):670.
doi: 10.3390/ijerph16040670[5] TSAI J C, KUMAR M, LIN J G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway[J]. Journal of Hazardous Materials, 2009, 164(2/3):847-855.
doi: 10.1016/j.jhazmat.2008.08.101[6] 雷忠春, 陈丽华, 孙万虹, 等. 甲基丙烯酸树脂吸附微生物降解与演化石油烃特性[J]. 环境科学研究, 2019, 32(1):142-149.LEI Z C, CHEN L H, SUN W H, et al. Biological degradation and transformation characteristics of total petroleum hydrocarbon by oil-degradation bacteria adsorbed on the resinmade by methylacrylic acid butyi ester[J]. Research of Environmental Sciences, 2019, 32(1):142-149. [7] SUTTON N B, MAPHOSA F, MORILLO J A, et al. Impact of long-term diesel contamination on soil microbial community structure[J]. Applied and Environmental Microbiology, 2013, 79(2):619-630.
doi: 10.1128/AEM.02747-12[8] SILVA-CASTRO G A, RODELAS B, PERUCHA C, et al. Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents:assays in a pilot plant[J]. Science of the Total Environment, 2013, 445/446:347-355.
doi: 10.1016/j.scitotenv.2012.12.081[9] JIAO S, LIU Z S, LIN Y B, et al. Bacterial communities in oil contaminated soils:biogeography and co-occurrence patterns[J]. Soil Biology and Biochemistry, 2016, 98:64-73.
doi: 10.1016/j.soilbio.2016.04.005[10] YAN Z S, HAO Z, WU H F, et al. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments[J]. Journal of Hazardous Materials, 2019, 367:99-108.
doi: 10.1016/j.jhazmat.2018.12.071[11] ZHU Q H, WU Y C, ZENG J, et al. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils[J]. Environmental Pollution, 2019, 247:229-237.
doi: 10.1016/j.envpol.2018.12.079[12] 代小丽, 王硕, 李佳斌, 等. 石油污染土壤原位生物修复强化技术研究进展[J]. 环境工程技术学报, 2020, 10(3):456-466.DAI X L, WANG S, LI J B, et al. Research progress on in situ bioremediation enhancement technology of oil contaminated soil[J]. Journal of Environmental Engineering Technology, 2020, 10(3):456-466. [13] 陈箐, 程昉, 宋晓峰, 等. 辽河油田油泥微生物多样性分析及功能菌种筛选评价[J]. 东北石油大学学报, 2017, 41(6):105-112.CHEN Q, CHENG F, SONG X F, et al. Analysis of microbial diversity and functional strain screening evaluation from Liaohe oilfield sludge[J]. Journal of Northeast Petroleum University, 2017, 41(6):105-112. [14] PENG M, ZI X X, WANG Q Y. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes[J]. International Journal of Environmental Research and Public Health, 2015, 12(10):12002-12015.
doi: 10.3390/ijerph121012002[15] YANG S C, GOU Y L, SONG Y, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil using nitrate and soil microbes[J]. Environmental Earth Sciences, 2018, 77(12):1-11.
doi: 10.1007/s12665-017-7169-5[16] 鲁如坤. 土壤农化分析[M]. 北京: 中国农业科学技术出版社, 1995. [17] GOU Y L, YANG S C, CHENG Y J, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide[J]. Chemical Engineering Journal, 2019, 356:524-533.
doi: 10.1016/j.cej.2018.09.059[18] 郭瑾, 葛蔚, 柴超, 等. 化学工业区周边土壤中多环芳烃含量、来源及健康风险评估[J]. 环境化学, 2018, 37(2):296-309.GUO J, GE W, CHAI C, et al. Concentrations,sources,and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants[J]. Environmental Chemistry, 2018, 37(2):296-309. [19] GARCIA-PAUSAS J, PATERSON E. Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon[J]. Soil Biology and Biochemistry, 2011, 43(8):1705-1713.
doi: 10.1016/j.soilbio.2011.04.016[20] 程东祥, 张玉川, 马小凡, 等. 长春市土壤重金属化学形态与土壤微生物群落结构的关系[J]. 生态环境学报, 2009, 18(4):1279-1285.CHENG D X, ZHANG Y C, MA X F, et al. Relationship between chemical forms of some heavy metals and the microbial community structure in soil in Changchun urban[J]. Ecology and Environmental Sciences, 2009, 18(4):1279-1285. [21] EKELUND F, RØNN R,CHRISTENSEN S.Distribution with depth of protozoa,bacteria and fungi in soil profiles from three Danish forest sites[J]. Soil Biology and Biochemistry, 2001, 33(4/5):475-481.
doi: 10.1016/S0038-0717(00)00188-7[22] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34(3):387-401.
doi: 10.1016/S0038-0717(01)00199-7[23] 董莉丽, 郑粉莉. 陕北黄土丘陵沟壑区土壤粒径分布分形特征[J]. 土壤, 2010, 42(2):302-308.DONG L L, ZHENG F L. Fractal characteristics of soil particle size distributions in gully-hilly regions of the loess plateau,north of Shaanxi,China[J]. Soils, 2010, 42(2):302-308. [24] 苟雅玲, 王东, 杨苏才, 等. 典型加油站土壤中微生物丰度及群落多样性[J]. 环境科学与技术, 2016, 39(6):1-6.GOU Y L, WANG D, YANG S C, et al. Microbial abundance and community structure in soil at a typical gas station site[J]. Environmental Science & Technology, 2016, 39(6):1-6. [25] FIERER N, SCHIMEL J P, HOLDEN P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1):167-176.
doi: 10.1016/S0038-0717(02)00251-1[26] 图影. 高浓度多环芳烃污染土壤的生物柴油及微生物修复[D]. 阜新:辽宁工程技术大学, 2009. [27] 徐苗, 段魏魏, 赵亚光, 等. 石油污染土壤理化性质对微生物代谢特征的影响[J]. 环境工程, 2018, 36(2):178-183.XU M, DUAN W W, ZHAO Y G, et al. Impact on microbial metabolic characteristics by physical and chemical properties of oil contaminated soil[J]. Environmental Engineering, 2018, 36(2):178-183. [28] 姚炎红, 王明霞, 左小虎, 等. 典型油田多环芳烃污染对土壤反硝化微生物群落结构的影响[J]. 环境科学, 2016, 37(12):4750-4759.YAO Y H, WANG M X, ZUO X H, et al. Effects of PAHs pollution on the community structure of denitrifiers in a typical oilfield[J]. Environmental Science, 2016, 37(12):4750-4759. [29] 甄丽莎, 谷洁, 胡婷, 等. 黄土高原石油污染土壤微生物群落结构及其代谢特征[J]. 生态学报, 2015, 35(17):5703-5710.ZHEN L S, GU J, HU T, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(17):5703-5710. [30] 李文旭, 何剑汶, 刘璟, 等. 黄水溪砷环境地球化学迁移行为及其细菌群落分析[J]. 环境科学研究, 2019, 32(6):966-973.LI W X, HE J W, LIU J, et al. Environmental geochemistry and transportation behavior of arsenic and bacterial community analysis in Huangshui Creek[J]. Research of Environmental Sciences, 2019, 32(6):966-973. [31] ROGERS S W, ONG S K, MOORMAN T B. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH[J]. Chemosphere, 2007, 69(10):1563-1573.
doi: 10.1016/j.chemosphere.2007.05.058[32] ZHANG D C, MÖRTELMAIER C, MARGESIN R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil[J]. Science of the Total Environment, 2012, 421/422:184-196.
doi: 10.1016/j.scitotenv.2012.01.043[33] GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369. [34] BELL T H, YERGEAU E, MARTINEAU C, et al. Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing[J]. Applied and Environmental Microbiology, 2011, 77(12):4163-4171.
doi: 10.1128/AEM.00172-11[35] GOU Y L, ZHAO Q Y, YANG S C, et al. Removal of polycyclic aromatic hydrocarbons (PAHs) and the response of indigenous bacteria in highly contaminated aged soil after persulfate oxidation[J]. Ecotoxicology and Environmental Safety, 2020, 190:110092.
doi: 10.1016/j.ecoenv.2019.110092[36] 刘款, 孙明明, 刘满强, 等. 土壤反硝化对磺胺嘧啶及抗性基因消减的影响[J]. 土壤, 2017, 49(3):482-491.LIU K, SUN M M, LIU M Q, et al. Effects of anaerobic denitrification on the dissipation of sulfadiazine and resistance genes in soil[J]. Soils, 2017, 49(3):482-491. [37] 姜睿玲, 杨统一, 陈芳艳, 等. 桑园土壤微生物群落功能多样性对PAHs污染的响应[J]. 生态与农村环境学报, 2012, 28(4):439-444.JIANG R L, YANG T Y, CHEN F Y, et al. Response of soil microbial community in mulberry garden to PAHs pollution in functional diversity[J]. Journal of Ecology and Rural Environment, 2012, 28(4):439-444. [38] CHEEMA S, LAVANIA M, LAL B. Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community[J]. Annals of Microbiology, 2015, 65(1):359-369.
doi: 10.1007/s13213-014-0868-1[39] GELSOMINO A, AZZELLINO A. Multivariate analysis of soils:microbial biomass,metabolic activity,and bacterial-community structure and their relationships with soil depth and type[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(3):381-394.
doi: 10.1002/jpln.v174.3[40] 吴盼云, 晁群芳, 赵亚光, 等. 克拉玛依石油污染土壤微生物群落结构及其代谢特征[J]. 基因组学与应用生物学, 2019, 38(5):2062-2069.WU P Y, CHAO Q F, ZHAO Y G, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in Karamay[J]. Genomics and Applied Biology, 2019, 38(5):2062-2069. [41] 李海云, 姚拓, 高亚敏, 等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报, 2019, 59(4):678-688.LI H Y, YAO T, GAO Y M, et al. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland[J]. Acta Microbiologica Sinica, 2019, 59(4):678-688. [42] WU Y C, ZENG J, ZHU Q H, et al. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution[J]. Scientific Reports, 2017, 7:40093.
doi: 10.1038/srep40093[43] ZHAO X H, FAN F Q, ZHOU H D, et al. Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons[J]. Bioprocess and Biosystems Engineering, 2018, 41(6):871-883.
doi: 10.1007/s00449-018-1921-4[44] GENG S Y, CAO W, YUAN J, et al. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs)[J]. Ecotoxicology and Environmental Safety, 2020, 203:110931.
doi: 10.1016/j.ecoenv.2020.110931[45] HABE H, OMORI T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria[J]. Bioscience,Biotechnology,and Biochemistry, 2003, 67(2):225-243.
doi: 10.1271/bbb.67.225[46] ZHANG S Y, WANG Q F, XIE S G. Bacterial and archaeal community structures in phenanthrene amended aquifer sediment microcosms under oxic and anoxic conditions[J]. International Journal of Environmental Research, 2012, 6(4):1077-1088.
点击查看大图
计量
- 文章访问数: 511
- HTML全文浏览量: 188
- PDF下载量: 79
- 被引次数: 0