-
摘要: 为判识光伏组件全生命周期环境影响,采用生命周期评价法对光伏组件的生产、使用、处置等阶段环境影响进行分析。通过现场和问卷调研的方式获得了光伏组件生产、使用阶段的能源物质消耗和污染物排放数据,通过回收工艺研发与应用获得了光伏组件处置阶段的能源物质投入、产出和污染物排放数据。依据不同的处置技术设计了填埋情景、拆解情景、热解情景,从而分别计算生产、使用、处置等阶段环境影响潜值并进行对比分析。结果表明:1)每m2光伏组件生产阶段和使用阶段环境影响潜值分别为13.98、1.50 Pt,处置阶段3种情景的环境影响潜值分别为0.04、-0.62、-3.59 Pt,因此3种情景下光伏组件全生命周期环境影响潜值分别为15.52、14.86、11.89 Pt。2)从环境影响类别来看,主要集中在呼吸系统损害、致癌和气候变化3个方面,从影响因素来看,电耗是主要因素,3种情景下占全生命周期环境影响的64.81%、67.70%、84.61%。3)从光伏发电的度电环境影响潜值水平来看,3种情景下光伏发电单位发电量环境影响潜值分别为3.34×10-3、3.20×10-3、2.56×10-3 Pt/(kW·h),占当前电力结构下单位发电量环境影响潜值〔70.1×10-3 Pt/(kW·h)〕的4.8%、4.6%、3.7%。4)从碳排放水平来看,3种情景下光伏组件单位发电量碳排放量分别是35.68、33.53、23.70 g/(kW·h)(CO2当量值),低于同类研究和我国电力行业水平。5)我国早期安装的光伏组件已接近报废周期,因此,大力发展光伏组件回收技术,不仅可以实现资源的回收,还可以降低光伏组件全生命周期环境影响,减少碳排放,从而实现能源环境双赢。Abstract: To analyze the environmental impacts of whole life cycle of photovoltaic module, Life Cycle Assessment (LCA) was conducted to analyze the environmental impacts of photovoltaic module whose life-cycle stages included manufacture, mounting and disposal. The energy, mass inputs and the environment emissions data of manufacture and mounting stages were obtained through field and questionnaire survey, while the data of energy, material input, output and pollutant emission in the disposal stage were obtained by development and application of specific recovery technology. To calculate the environmental impact potentials of manufacture, mounting and disposal stage, the landfill, disassembly and pyrolysis scenario were set up according to different disposal technologies. The results were compared and analyzed. It showed that: 1) The environmental impact potential of manufacture and mounting stages was 13.98 and 1.50 Pt, respectively, for 1 m2 photovoltaic module, that of disposal stage under three scenarios was 0.04, -0.62, -3.59 Pt, respectively, and thus that of the whole life cycle was 15.52, 14.86, 11.89 Pt, respectively for the three scenarios. 2) From the viewpoint of environmental impact categories, the whole life cycle environmental impacts focused on respiratory system damage, carcinogenic and climate change. From the viewpoint of factors, power consumption was the main factor, accounting for 64.81%, 67.70% and 84.61%, respectively, under the three scenarios. 3) The environmental impact potential of 1 kW·h of electricity generation from photovoltaic module under the three scenarios was 3.34×10-3, 3.20×10-3, 2.56×10-3 Pt/(kW·h), respectively, which was equivalent to 4.8%, 4.6%, 3.7%, respectively, of that from the current electrical power system (70.1×10-3 Pt/(kW·h)). 4) From the perspective of carbon emission level, the carbon emission of 1 kW·h of electricity generation from photovoltaic module was 35.68, 33.53, 23.70 g CO2-eqv/(kW·h), respectively, which was lower than the level of similar studies and China’s electrical power industry. 5) The photovoltaic modules of China installed in the early years were nearing the disposal stage. The vigorous development of the recovery technology could not only achieve resources recovery, but also reduce the environmental impact and carbon emissions of the whole life cycle of photovoltaic modules, thus achieving a win-win situation between environment and energy.
-
Key words:
- photovoltaic /
- recycling /
- environmental impacts /
- life cycle assessment /
- scenario analysis
-
[1] 王勃华, 王世江, 江华, 等. 2018—2019年中国光伏产业年度报告[R]. 北京:中国光伏行业协会, 2019. [2] 第一次全国污染源普查资料编纂委员会. 污染源普查产排污系数手册[M]. 北京: 中国环境科学出版社, 2011. [3] HUNT L P. Total energy use in the production of silicon solar cells from raw materials to finished product[C]//12th Photovoltaic Specialists Conference. New York:Institute of Electrical and Electronics Engineers,Inc., 1976:347-352. [4] MASAKAZU I, KAZUHIKO K, HIROYUKI S, et al. A preliminary study on potential for very large-scale photovoltaic power generation (VLS-PV) system in the Gobi desert from economic and environmental viewpoints[J]. Solar Energy Materials & Solar Cells, 2003, 75(3/4):507-517.
doi: 10.1016/S0927-0248(02)00198-8[5] MASAKAZU I, KEICHI K, KOSUKE K. Life-cycle analyses of very-large scale PV systems using six types of PV modules[J]. Current Applied Physics, 2010, 10(2):271-273. [6] FTHENAKIS V M, KIM H C. Photovoltaics:life-cycle analyses[J]. Solar Energy, 2011, 85(8):1609-1628.
doi: 10.1016/j.solener.2009.10.002[7] JUNGBLUTH N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database[J]. Progress Photovoltaic, 2005, 13(5):429-446.
doi: 10.1002/(ISSN)1099-159X[8] 胡润青. 太阳能光伏系统的能量回收期有多长[J]. 太阳能, 2008(3):6-10.HU R Q. How long is the energy recovery period of a solar photovoltaic system[J]. Solar Energy, 2008(3):6-10. [9] 胡润青. 我国多晶硅并网光伏系统能量回收期的研究[J]. 太阳能, 2009(1):9-14.HU R Q. Study on energy recovery period of polysilicon grid-connected photovoltaic system in China[J]. Solar Energy, 2009(1):9-14. [10] 刁周玮, 石磊. 中国光伏电池组件的生命周期评价[J]. 环境科学研究, 2011, 24(5):571-572.DIAO Z W, SHI L. Life cycle assessment of photovoltaic panels in China[J]. Research of Environmental Sciences, 2011, 24(5):571-572. [11] FU Y Y, LIU X, YUAN Z W. Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China[J]. Journal of Cleaner Production, 2015, 86(1):180-190.
doi: 10.1016/j.jclepro.2014.07.057[12] 刘臣辉, 詹晓燕, 范海燕, 等. 多晶硅-光伏系统碳排放环节分析[J]. 太阳能学报, 2012, 33(7):1158-1163.LIU C H, ZHAN X Y, FAN H Y, et al. Analysis of carbon emision links on polycrystalline-silicon PV system[J]. Acta Energiae Solaris Sinica, 2012, 33(7):1158-1163. [13] YANG D, LIU J R, YANG J X, et al. Life-cycle assessment of China’s multi-crystalline silicon photovoltaic modules considering international trade[J]. Journal of Cleaner Production, 2015, 94(5):35-45.
doi: 10.1016/j.jclepro.2015.02.003[14] CHEN W, HONG J L, YUAN X L, et al. Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production:a case study in China[J]. Journal of Cleaner Production, 2016, 112(1):1025-1032.
doi: 10.1016/j.jclepro.2015.08.024[15] HONG J L, CHEN W, QI C C, et al. Life cycle assessment of multicrystalline silicon photovoltaic cell production in China[J]. Solar Energy, 2016, 133(8):283-293.
doi: 10.1016/j.solener.2016.04.013[16] 于志强, 马文会, 郑达敏, 等. 冶金法制备太阳能级多晶硅的生命周期评价研究[J]. 昆明理工大学学报(自然科学版), 2016, 41(4):16-21.YU Z Q, MA W H, ZHENG D M, et al. Life cycle assessment of solar grade multi-crystalline silicon preparation by metallurgical method[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(4):16-21. [17] YU Z Q, MA W H, XIE K Q, et al. Life cycle assessment of grid-connected power generation from metallurgical rout multi-crystalline silicon photovoltaic system in China[J]. Applied Energy, 2017, 185(1):68-81.
doi: 10.1016/j.apenergy.2016.10.051[18] 谢明辉, 阮久莉, 白璐, 等. 太阳能级多晶硅生命周期环境影响评价[J]. 环境科学研究, 2015, 28(2):291-296.XIE M H, RUAN J L, BAI L, et al. Environmental impacts of solar grade polysilicon based on life cycle assessment[J]. Research of Environmental Sciences, 2015, 28(2):291-296. [19] XIE M H, RUAN J R, BAI W N, et al. Pollutant payback time and environmental impact of Chinese multicrystalline photovoltaic production based on life cycle assessment[J]. Journal of Cleaner Production, 2018, 184(5):648-659.
doi: 10.1016/j.jclepro.2018.02.290[20] 李鹞, 于随然. 中国光伏系统的生命周期评价[J]. 环境工程, 2014, 32(10):119-124.LI Y, YU S R. Life cycle assessment of photovoltaic system in China[J]. Environmental Engineering, 2014, 32(10):119-124. [21] GUO X P, LIN K, HUANG H, et al. Carbon footprint of the photovoltaic power supply chain in China[J]. Journal of Cleaner Production, 2019, 233(10):626-633.
doi: 10.1016/j.jclepro.2019.06.102[22] GONG D R, CHEN D, YUAN Z Z. Mathematics calculation model and application of CO2 emission of photovoltaic (PV) power generation system[J]. Renew Energy Resource, 2013, 31(9):1-4. [23] HUANG B J, ZHAO J, CHAI J Y, et al. Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process[J]. Solar Energy, 2017, 143(2):132-141.
doi: 10.1016/j.solener.2016.12.038[24] International Organisation for Standardisation Technical. Environmental management life cycle assessment:principles and framework:ISO 14040:2006[S]. Geneva:International Organisation for Standardisation, 1998. [25] GOEDKOOP M. The Eco-indicator 99:a damage oriented method for life cycle impact assessment manual for designers[M]. Amersfoort:Pre Consultants, 2001. [26] RUAN J L, XIE M H, QIAO Q, et al. The localization application of the characterization and normalization method of resources depletion in China[J]. Energy Education Science and Technology Part A:Energy Science and Research, 2012, 30(4):1007-1012. [27] 谢明辉, 白璐, 阮久莉, 等. 以晶体硅太阳能电池产业为例的产业生命周期评价初探[J]. 环境科学研究, 2017, 30(12):1970-1978.XIE M H, BAI L, RUAN J L, et al. Exploratory research on industrial life cycle assessment illustrated by case study of crystalline silicon photovoltaic cell industry[J]. Research of Environmental Sciences, 2017, 30(12):1970-1978. [28] 谢明辉, 阮久莉, 乔琦, 等. 基于生命周期评价的多晶硅片环境影响研究[J]. 环境工程技术学报, 2016, 6(1):72-77.XIE M H, RUAN J L, QIAO Q, et al. Research on environmental impacts of multi-silicon wafer based on life cycle assessment[J]. Journal of Environmental Engineering Technology, 2016, 6(1):72-77. [29] 王俊杰, 赵娇娇, 孟旭超, 等. 光伏光电行业含氟废水及污泥利用处置研究现状及展望[J]. 环境工程技术学报, 2018, 8(3):106-115.WANG J J, ZHAO J J, MENG X C, et al. Research status and prospect of fluorinates wastewater and sludge utilization in photovoltaic industry[J]. Journal of Environmental Engineering Technology, 2018, 8(3):333-342. [30] 董莉, 刘景洋, 张建强, 等. 废晶体硅光伏组件资源化处理技术研究现状[J]. 现代化工, 2014, 34(2):20-23.DONG L, LIU J Y, ZHANG J Q, et al. Research situation of waste crystalline silicon PV modules resource processing technology[J]. Modern Chemical Industry, 2014, 34(2):20-23. [31] 董莉, 刘景洋, 周潇云, 等. 废晶体硅光伏组件中乙烯-醋酸乙烯共聚物热处理及产物分析[J]. 环境污染与防治, 2016(38):66.DONG L, LIU J Y, ZHOU X Y, et al. Thermal treatment and products analysis of EVA in waste crystalline silicon photovoltaic modules[J]. Environmental Pollution & Control, 2016(38):66. [32] 刘夏璐, 王洪涛, 陈建, 等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10):2136-2143.LIU X L, WANG H T, CHEN J, et al. Method and basic model for development of Chinese reference life cycle database of fundamental industries[J]. Acta Scientiae Circumstantiae, 2010, 30(10):2136-2143. [33] 翁琳, 陈剑波. 光伏系统基于全生命周期碳排放量计算的环境与经济效益分析[J]. 上海理工大学学报, 2017, 39(3):282-288.WENG L, CHEN J B. Environmental and economic analysis on the carbon dioxide emissions calculation in the life cycle of a photovoltaic system[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(3):282-288. [34] 中国电力企业联合会. 中国电力行业年度发展报告2019[M]. 北京: 中国建材工业出版社, 2019.
点击查看大图
计量
- 文章访问数: 627
- HTML全文浏览量: 93
- PDF下载量: 98
- 被引次数: 0