Characteristics of bacterial population of water from Tianjin Lingang Coastal Wetland Park
-
摘要: 为了解天津临港湿地公园不同季节不同功能区水体细菌种群及其差异特征,采用高通量测序技术分析了湿地进水口、潜流湿地区、景观水体区及出水口水体中夏秋季的细菌种群结构,并采用主成分分析法分析其主要环境影响因素。结果表明:细菌Shannon多样性指数夏季为4.25~5.14,秋季为3.07~4.32,种群丰富度Chao指数夏季为569.10~894.04,秋季为473.22~995.81,整体上细菌多样性夏季高于秋季,其中夏季潜流湿地区细菌多样性和丰富度最高,秋季湿地进水口细菌多样性和丰富度最高;夏季共检测到细菌34门、423属、641种,主要优势门为变形菌门、放线菌门、拟杆菌门、蓝细菌门,主要优势属为红细菌属、噬氢菌属、norank_f_FamilyⅠ;秋季共检测到细菌34门、520属、786种,主要优势门为变形菌门、放线菌门、拟杆菌门,主要优势属为红细菌属、嗜冷杆菌属、聚球藻属;在优势属中,嗜氢菌属只在夏季潜流湿地区具有较高的相对丰度,嗜冷杆菌属只在秋季潜流湿地区具有较高的相对丰度,表明这些菌属为潜流湿地区特有菌种;基于OTU水平的物种Venn图发现,湿地公园不同区域夏季细菌共有种为187种,秋季为110种;基于OTU水平下物种组成与环境因子间的主成分分析结果表明,影响湿地公园细菌种群组成的主要环境因子为水温、pH与$NO_3^-$-N、NH3-N浓度。Abstract: To understand the bacterial community and its difference characteristics of water bodies in different functional areas of Tianjin Lingang Coastal Wetland Park in different seasons, the high-throughput sequencing technology was used to analyze the bacterial population structure of water from the intake, subsurface wetland, landscape water area and the water outlet of the wetland park in summer and autumn, and the principal component analysis was used to analyze its main environmental influential factors. The results showed that Shannon diversity index of bacteria ranged from 4.25 to 5.14 in summer and from 3.07 to 4.32 in autumn, Chao index of population abundance ranged from 569.10 to 894.04 in summer and from 473.22 to 995.81 in autumn. Overall, Shannon diversity index was higher in summer than that in autumn. And the highest bacterial diversity and richness in summer was in subsurface wetland, while in autumn it was in water intake. A total of 34 phyla, 423 genera, and 641 species of bacteria were detected in summer. The main dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and the main dominant genera included Rhodobacter, Hydrogenophaga, norank_f_FamilyⅠ. In comparison, a total of 34 phyla, 520 genera, and 786 species of bacteria were detected in autumn. The main dominant phyla included Proteobacteria, Actinomycetes, Actinobacteria, Bacteroidetes, and the main dominant genera includedRhodobacter, Psychrobacter, Synechococcus. Among the dominant genera, the relative abundance of Hydrogenophaga was high only in the subsurface wetland in summer, and that of Psychrobacter was high only in the subsurface wetland in autumn. However, they were not detected in other area, indicating that these genera were unique in the subsurface wetland. The Venn map of species based on OTU levels showed that there were 187 common species in different areas of the wetland park in summer, and 110 species in autumn. The principal component analysis based on OTU level between species composition and environmental factors showed that the main environmental factors affecting the bacterial population composition of wetland parks included temperature, pH, $NO_3^-$-N, and NH3-N.
-
Key words:
- coastal wetland park /
- high-throughput sequencing /
- bacteria /
- population characteristics
-
[1] MATAMOROS V, RODRÍGUEZ Y, BAYONA J M. Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater[J]. Ecological Engineering, 2017, 99:222-227.
doi: 10.1016/j.ecoleng.2016.11.054[2] 赵虎生. 人工湿地发展概况及应用前景[J]. 现代农业科技, 2019(7):167. [3] 王绍祥, 杨洲祥, 孙真, 等. 高通量测序技术在水环境微生物群落多样性中的应用[J]. 化学通报, 2014, 77(3):196-203.WANG S X, YANG Z X, SUN Z, et al. Application of high throughput sequencing in the diversity of water microbial communities[J]. Chemistry, 2014, 77(3):196-203. [4] 潘傲, 张智, 孙磊, 等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析[J]. 环境工程学报, 2019, 13(8):1918-1929.PAN A, ZHANG Z, SUN L, et al. Purification effects and microbial community differences of the surface-flow constructed wetlands with different vegetation plantation[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1918-1929. [5] WARĘŻAK T, WŁODARCZYK-MAKUŁA M, SADECKA Z. Accumulation of PAHs in plants from vertical flow-constructed wetland[J]. Desalination and Water Treatment, 2016, 57(3):1273-1285.
doi: 10.1080/19443994.2015.1017332[6] VYMAZAL J, KRÖPFELOVÁ L, ŠVEHLA J, et al. Heavy metals in Phalaris arundinacea growing in a constructed wetland treating municipal sewage [J]. International Journal of Environmental Analytical Chemistry, 2011, 91(7/8):753-767.
doi: 10.1080/03067311003778672[7] 赵晓芬. 几种湿地植物根际微生物的分离鉴定及其污水净化效果的研究[D]. 青岛: 中国海洋大学, 2012. [8] REDDY K R, D’ANGELO E M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J]. Water Science and Technology, 1997, 35(5):1-10. [9] DONNELLY A P, HERBERT R A. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons[J]. Journal of Applied Microbiology, 1998, 85(Suppl 1):151-160. [10] ROSSELLÓ-MORA R, AMANN R. The species concept for prokaryotes[J]. FEMS Microbiology Reviews, 2001, 25(1):39-67.
doi: 10.1016/S0168-6445(00)00040-1[11] HUGENHOLTZ P, GOEBEL B M, PACE N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J]. Journal of Bacteriology, 1998, 180(18):4765-4774.
doi: 10.1128/JB.180.18.4765-4774.1998[12] QIAN P Y, WANG Y, LEE O O, et al. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing[J]. The ISME Journal, 2011, 5(3):507-518.
doi: 10.1038/ismej.2010.112[13] 楼骏, 柳勇, 李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 2014, 30(15):256-260.LOU J, LIU Y, LI Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(15):256-260. [14] 王丽平, 刘录三, 隋晓斌. 多环芳烃对渤海湾潮间带沉积物微生物群落结构的影响[J]. 海洋环境科学, 2013, 32(6):856-859.WANG L P, LIU L S, SUI X B. Effects of PAHs to microbial community structure in Bohai tidal sediment[J]. Marine Environmental Science, 2013, 32(6):856-859. [15] 王林, 李冰, 朱健. 高通量测序技术在人工湿地微生物多样性研究中的研究进展[J]. 中国农学通报, 2016, 32(5):10-15.WANG L, LI B, ZHU J. Review of high-throughput sequencing techniques on constructed wetland microbial diversity[J]. Chinese Agricultural Science Bulletin, 2016, 32(5):10-15. [16] 姚美辰, 段亮, 张恒亮, 等. 辽河保护区人工湿地微生物群落结构及分布规律[J]. 环境工程技术学报, 2019, 9(3):233-238.YAO M C, DUAN L, ZHANG H L, et al. Microbial community structure and distribution of constructed wetlands in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology, 2019, 9(3):233-238. [17] MEDINGER R, NOLTE V, PANDEY R V, et al. Diversity in a hidden world:potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms[J]. Molecular Ecology, 2010, 19(Suppl 1):32-40.
doi: 10.1111/mec.2010.19.issue-s1[18] ARFI Y, BUÉE M, MARCHAND C, et al. Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa [J]. FEMS Microbiology Ecology, 2012, 79(2):433-444.
doi: 10.1111/fem.2011.79.issue-2[19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] MARTÍN M, GARGALLO S, HERNÁNDEZ-CRESPO C, et al. Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland[J]. Ecological Engineering, 2013, 61:34-42.
doi: 10.1016/j.ecoleng.2013.09.046[21] 房昀昊, 彭剑峰, 宋永会, 等. 高通量测序法表征潜流人工湿地中不同植物根际细菌群落特征[J]. 环境科学学报, 2018, 38(3):911-918.FANG Y H, PENG J F, SONG Y H, et al. High throughput sequencing analysis of microbial communities in different plant rhizosphere in subsurface-flow constructed wetland[J]. Acta Scientiae Circumstantiae, 2018, 38(3):911-918. [22] 龚娟. 人工湿地植物对高氨氮的耐受性及固定化微生物强化脱氮研究[D]. 上海: 东华大学, 2015. [23] 付融冰, 杨海真, 顾国维, 等. 人工湿地基质微生物状况与净化效果相关分析[J]. 环境科学研究, 2005, 18(6):44-49.FU R B, YANG H Z, GU G W, et al. Analysis of substrate microorganisms status in constructed wetlands and their correlation with pollutants removal for wastewater treatment[J]. Research of Environmental Sciences, 2005, 18(6):44-49. [24] 雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5):1373-1381.LEI X, LI B, LI X, et al. Rhizosphere microbial communities of three plants in vertical-flow constructed wetland[J]. Chinese Journal of Ecology, 2015, 34(5):1373-1381. [25] 赵庆节, 梁丹涛, 沈根祥, 等. 五种人工湿地植物根际细菌多样性的研究[J]. 三峡环境与生态, 2008, 1(3):11-13.ZHAO Q J, LIANG D T, SHEN G X, et al. Study of bacterial diversity in the rhizospheres of five plants grown in the running constructed wetland[J]. Environment and Ecology in the Three Gorges, 2008, 1(3):11-13. [26] 项学敏, 宋春霞, 李彦生, 等. 湿地植物芦苇和香蒲根际微生物特性研究[J]. 环境保护科学, 2004, 30(4):35-38.XIANG X M, SONG C X, LI Y S, et al. Microorganism features of Typha latifolia and Phragmites australis at rhizosphere [J]. Environmental Protection Science, 2004, 30(4):35-38. [27] CIFUENTES A, ANTÓN J, BENLLOCH S, et al. Prokaryotic diversity in Zostera noltii-colonized marine sediments [J]. Applied and Environmental Microbiology, 2000, 66(4):1715-1719.
doi: 10.1128/AEM.66.4.1715-1719.2000[28] MADRID V M, ALLER J Y, ALLER R C, et al. High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana:identification of two new bacterial candidate divisions[J]. FEMS Microbiology Ecology, 2001, 37(3):197-209.
doi: 10.1111/fem.2001.37.issue-3[29] 杨孟然, 邢维佳, 赵丹, 等. 五大连池药泉湖沉积物的细菌多样性[J]. 黑龙江八一农垦大学学报, 2020, 32(1):67-71.YANG M R, XING W J, ZHAO D, et al. Bacterial diversity in sediment of Yaoquan Lake[J]. Journal of Heilongjiang Bayi Agricultural University, 2020, 32(1):67-71. [30] 文都日乐, 李刚, 杨殿林, 等. 呼伦贝尔草原土壤固氮微生物nifH基因多样性与群落结构[J]. 生态学杂志, 2011, 30(4):790-797.WEN D R L, LI G, YANG D L, et al. nifH gene diversity and community structure of soil nitrogen-fixing bacteria in Hulunbeier grassland,Inner Mongolia[J]. Chinese Journal of Ecology, 2011, 30(4):790-797. [31] BOSSHARD P P, SANTINI Y, GRÜTER D, et al. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis[J]. FEMS Microbiology Ecology, 2000, 31(2):173-182.
doi: 10.1111/fem.2000.31.issue-2[32] METHÉ B A, ZEHR J P. Diversity of bacterial communities in Adirondack Lakes:do species assemblages reflect lake water chemistry[J]. Hydrobiologia, 1999, 401:77-96.
doi: 10.1023/A:1003782209607[33] 王政. 好氧颗粒污泥及生物膜反应器脱氮除磷及菌落特征研究[D]. 济南: 山东建筑大学, 2018. [34] 陈洪波. 内聚物驱动生物脱氮除磷机理及优化控制研究[D]. 长沙: 湖南大学, 2015. [35] 彭云, 李舒馨, 俞泽, 等. 一株海洋放线菌的鉴定及其促生作用机理[J]. 微生物学通报, 2020, 47(11):3515-3526.PENG Y, LI S X, YU Z, et al. Identification and growth promoting effect of a marine actinomycete[J]. Microbiology China, 2020, 47(11):3515-3526. [36] 刘晓飞, 侯艳, 马京求, 等. 降解玉米芯木质纤维素放线菌的筛选与发酵条件优化[J]. 农业机械学报, 2020, 51(11):329-337.LIU X F, HOU Y, MA J Q, et al. Efficient degradation and optimization of fermentation conditions of actinomycetes from corn cob[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11):329-337. [37] 谭啟超, 肖飞榕, 梁佳欣, 等. 两株海洋放线菌的产色素特性[J]. 微生物学通报, 2020, 47(12):3964-3973.TAN Q C, XIAO F R, LIANG J X, et al. Pigments production by two marine actinobacteria[J]. Microbiology China, 2020, 47(12):3964-3973. [38] 刘晓飞, 侯艳, 马京求, 等. 放线菌的筛选及应用研究进展[J]. 饲料研究, 2020, 43(3):140-143.LIU X F, HOU Y, MA J Q, et al. Research progress in screening and application of actinomycetes[J]. Feed Research, 2020, 43(3):140-143. [39] CHANTHASENA P, NANTAPONG N. Biodiversity of antimicrobial- producing actinomycetes strains isolated from dry dipterocarp forest soil in northeast Thailand[J/OL]. Brazilian Archives of Biology and Technology, 2016.doi: 10.1590/1678-4324-2016150674.
doi: 10.1590/1678-4324-2016150674[40] THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes:the food connection[J]. Frontiers in Microbiology, 2011, 2:93. [41] HILL V R, KAHLER A M, JOTHIKUMAR N, et al. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples[J]. Applied and Environmental Microbiology, 2007, 73(13):4218-4225.
doi: 10.1128/AEM.02713-06[42] 张斌, 邱志刚, 金敏, 等. 污泥好氧颗粒化过程中微生物群落结构的演变与分析[J]. 环境工程学报, 2011, 5(10):2369-2374.ZHANG B, QIU Z G, JIN M, et al. Evolution and analysis of microbial community structure during aerobic sludge granulation[J]. Chinese Journal of Environmental Engineering, 2011, 5(10):2369-2374. [43] KIERZKOWSKA M, MAJEWSKA A, SZYMANEK-MAJCHRZAK K, et al. The presence of antibiotic resistance genes and bft genes as well as antibiotic susceptibility testing of Bacteroides fragilis strains isolated from inpatients of the Infant Jesus Teaching Hospital,Warsaw during 2007-2012[J]. Anaerobe,2019, 56:109-115.
doi: 10.1016/j.anaerobe.2019.03.003[44] SYDENHAM T V, JENSEN B H, PETERSEN A M, et al. Antimicrobial resistance in the Bacteroides fragilis group in faecal microbiota from healthy Danish children [J]. International Journal of Antimicrobial Agents, 2017, 49(5):573-578.
doi: 10.1016/j.ijantimicag.2017.01.011[45] SU J Q, AN X L, LI B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China[J]. Microbiome, 2017, 5(1):1-15.
doi: 10.1186/s40168-016-0209-7[46] 田锐, 李作扬, 王斌, 等. 辽东湾滨海湿地翅碱蓬根系及内生细菌群落多样性分析[C]// 2015年中国环境科学学会学术年会论文集. 北京: 中国环境科学出版社, 2015:4411-4417. [47] 姚延丹, 李谷, 陶玲, 等. 复合池塘循环水养殖系统微生物群落结构分析[J]. 中国水产科学, 2011, 18(2):407-415.
doi: 10.3724/SP.J.1118.2011.00407YAO Y D, LI G, TAO L, et al. Analysis of microbial community structure in an integrated pond recirculating aquaculture system[J]. Journal of Fishery Sciences of China, 2011, 18(2):407-415. doi: 10.3724/SP.J.1118.2011.00407[48] 朱喜, 朱云. 太湖蓝藻暴发治理存在的问题与治理思路[J]. 环境工程技术学报, 2019, 9(6):714-719.ZHU X, ZHU Y. Problems and countermeasures of controlling cyanobacteria bloom in Taihu Lake[J]. Journal of Environmental Engineering Technology, 2019, 9(6):714-719. [49] 黄媛, 方序, 褚文珂, 等. 杭州西溪湿地沉积物细菌的群落结构和多样性[J]. 海洋与湖沼, 2015, 46(5):1202-1209.HUANG Y, FANG X, CHU W K, et al. Bacterial diversity and community structure in sediments of Xixi wetland,Hangzhou[J]. Oceanologia et Limnologia Sinica, 2015, 46(5):1202-1209. [50] BRYANT D A, FRIGAARD N U. Prokaryotic photosynthesis and phototrophy illuminated[J]. Trends in Microbiology, 2006, 14(11):488-496.
doi: 10.1016/j.tim.2006.09.001[51] PETERS S, KOSCHINSKY S, SCHWIEGER F, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes[J]. Applied and Environmental Microbiology, 2000, 66(3):930-936.
doi: 10.1128/AEM.66.3.930-936.2000[52] 贾洋洋. 利用宏基因组方法分析堆肥生境中微生物区系的变化[D]. 济南: 山东大学, 2012. [53] 魏自民, 王佰洁, 赵越, 等. 堆肥低温起爆微生物筛选及其初步应用[J]. 环境科学研究, 2015, 28(6):981-986.WEI Z M, WANG B J, ZHAO Y, et al. Cold-tolerant bacteria screening and its inoculation in composting at low temperatures[J]. Research of Environmental Sciences, 2015, 28(6):981-986. [54] SOROKIN D Y, KUENEN J G, MUYZER G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes[J]. Frontiers in Microbiology, 2011, 2:44. [55] SPIJKERMAN E, COESEL P F M. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope[J]. Freshwater Biology, 1998, 39(3):503-513.
doi: 10.1046/j.1365-2427.1998.00299.x[56] WHITBY C B, SAUNDERS J R, PICKUP R W, et al. A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake[J]. Antonie van Leeuwenhoek, 2001, 79(2):179-188.
doi: 10.1023/A:1010202211368
点击查看大图
计量
- 文章访问数: 429
- HTML全文浏览量: 126
- PDF下载量: 68
- 被引次数: 0