留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同位素技术在地下水研究中的主要应用

马宝强 王潇 汤超 李莉 马建源 妙旭华

马宝强, 王潇, 汤超, 李莉, 马建源, 妙旭华. 同位素技术在地下水研究中的主要应用[J]. 环境工程技术学报, 2021, 11(5): 919-926. doi: 10.12153/j.issn.1674-991X.20200263
引用本文: 马宝强, 王潇, 汤超, 李莉, 马建源, 妙旭华. 同位素技术在地下水研究中的主要应用[J]. 环境工程技术学报, 2021, 11(5): 919-926. doi: 10.12153/j.issn.1674-991X.20200263
Baoqiang MA, Xiao WANG, Chao TANG, Li LI, Jianyuan MA, Xuhua MIAO. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 919-926. doi: 10.12153/j.issn.1674-991X.20200263
Citation: Baoqiang MA, Xiao WANG, Chao TANG, Li LI, Jianyuan MA, Xuhua MIAO. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 919-926. doi: 10.12153/j.issn.1674-991X.20200263

同位素技术在地下水研究中的主要应用

doi: 10.12153/j.issn.1674-991X.20200263
详细信息
    作者简介:

    马宝强(1991—),男,硕士,研究方向为土壤与地下水的污染防治, 243638366@qq.com

  • 中图分类号: X523

Main applications of isotope technology in groundwater study

  • 摘要: 主要从示踪地下水补给来源、水岩相互作用,识别地下水污染来源和估算地下水年龄与更新能力等方面回顾了同位素技术在地下水研究中的主要应用。利用氢氧稳定同位素(2H、18O)示踪地下水的补给来源已经成为地下水补给研究的重要方向。通过分析地下水中87Sr/86Sr、26Mg等同位素的变化,有助于认识地下水的水质成因和水文地球化学过程。同位素技术在识别地下水污染来源方面具有独特的价值,如借助硝酸盐的氮氧同位素(15N、18O)可以识别地下水中硝酸盐的来源。应用3H、14C等放射性同位素不仅可以获取地下水的年龄,而且有助于认识地下水的循环和更新能力,地下水的更新能力是地下水可持续开发利用的重要参考指标。

     

  • [1] CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: Lewis Publishers, 1997.
    [2] 王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991.
    [3] ADELANA S M A. Environmental isotopes in hydrogeology[M]. New Jersey: John Wiley & Sons Inc, 2005.
    [4] 叶思源, 孙继朝, 姜春永. 水文地球化学研究现状与进展[J]. 地球学报, 2002, 23(5):477-482.

    YE S Y, SUN J C, JIANG C Y. Current situation and advances in hydrogeochemical researches[J]. Acta Geosicientia Sinica, 2002, 23(5):477-482.
    [5] 马传明, 刘存富, 周爱国. 同位素水文学新技术新方法[M]. 武汉: 中国地质大学出版社, 2010.
    [6] 汪集旸, 陈建生, 陆宝宏, 等. 同位素水文学的若干回顾与展望[J]. 河海大学学报(自然科学版), 2015, 43(5):406-413.

    WANG J Y, CHEN J S, LU B H, et al. Review and prospect of isotope hydrology[J]. Journal of Hohai University(Natural Sciences), 2015, 43(5):406-413.
    [7] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6):636-646.

    LI H L, WANG X J. Submarine groundwater discharge:a review[J]. Advances in Earth Science, 2015, 30(6):636-646.
    [8] 张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5):738-747.

    ZHANG Y H, WU Y Q, WEN X H, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006, 17(5):738-747.
    [9] 中国科学院. 中国学科发展战略:地下水科学[M]. 北京: 科学出版社, 2018.
    [10] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1703.
    doi: 10.1126/science.133.3465.1702
    [11] 周训. 地下水科学专论[M]. 北京: 地质出版社, 2010.
    [12] 马金珠, 黄天明, 丁贞玉, 等. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9):922-930.

    MA J Z, HUANG T M, DING Z Y, et al. Environmental isotopes as the indicators of the groundwater recharge in the south Badain Jaran Desert[J]. Advances in Earth Science, 2007, 22(9):922-930.
    [13] Global network of isotopes in precipitation(GNIP)[EB/OL]. [2020-11-03]. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.
    [14] KONG Y L, WANG K, LI J, et al. Stable isotopes of precipitation in China:a consideration of moisture sources[J]. Water, 2019, 11(6):1239.
    doi: 10.3390/w11061239
    [15] 陈宗宇, 万力, 聂振龙, 等. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006, 33(6):9-14.

    CHEN Z Y, WAN L, NIE Z L, et al. Identification of groundwater recharge in the Heihe Basin using environmental isotopes[J]. Hydrogeology & Engineering Geology, 2006, 33(6):9-14.
    [16] 马致远. 环境同位素方法在平凉市岩溶地下水研究中的应用[J]. 地质论评, 2004, 50(4):433-439.

    MA Z Y. Application of the environmental isotope technique to the study of karst groundwater in Pingliang City[J]. Geological Review, 2004, 50(4):433-439.
    [17] LI J, PANG Z H, KONG Y L, et al. Groundwater isotopes biased toward heavy rainfall events and implications on the local meteoric water line[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(11):6259-6266.
    doi: 10.1029/2018JD028413
    [18] LIN R F, WEI K Q. Tritium profiles of pore water in the Chinese loess unsaturated zone:implications for estimation of groundwater recharge[J]. Journal of Hydrology, 2006, 328(1/2):192-199.
    doi: 10.1016/j.jhydrol.2005.12.010
    [19] HUANG T M, MA B Q, PANG Z H, et al. How does precipitation recharge groundwater in loess aquifers:evidence from multiple environmental tracers[J]. Journal of Hydrology, 2020, 583:124532.
    doi: 10.1016/j.jhydrol.2019.124532
    [20] 卞跃跃, 赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报, 2018, 39(4):491-497.

    BIAN Y Y, ZHAO D. Genesis of geothermal waters in the Kangding geothermal field,Sichuan Province[J]. Acta Geoscientica Sinica, 2018, 39(4):491-497.
    [21] 苏小四, 吴春勇, 董维红, 等. 鄂尔多斯沙漠高原白垩系地下水锶同位素的演化机理[J]. 成都理工大学学报(自然科学版), 2011, 38(3):348-358.

    SU X S, WU C Y, DONG W H, et al. Strontium isotope evolution mechanism of the Cretaceous groundwater in Ordos Desert Plateau[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2011, 38(3):348-358.
    [22] 叶萍, 周爱国, 刘存富, 等. 河北平原地下水水-岩作用新证据:锶同位素示踪演变特征[J]. 水文地质工程地质, 2007, 34(4):41-43.

    YE P, ZHOU A G, LIU C F, et al. New water-rock interaction evidence for groundwater in the Hebei Plain:characteristics of Sr isotope tracer[J]. Hydrogeology & Engineering Geology, 2007, 34(4):41-43.
    [23] HUANG T M, MA B Q. The origin of major ions of groundwater in a loess aquifer[J]. Water, 2019, 11(12):2464.
    doi: 10.3390/w11122464
    [24] TIPPER E T, GAILLARDET J, LOUVAT P, et al. Mg isotope constraints on soil pore-fluid chemistry:evidence from Santa Cruz,California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14):3883-3896.
    doi: 10.1016/j.gca.2010.04.021
    [25] JACOBSON A D, ZHANG Z F, LUNDSTROM C, et al. Behavior of Mg isotopes during dedolomitization in the Madison aquifer,South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3/4):446-452.
    doi: 10.1016/j.epsl.2010.06.038
    [26] ZHANG H, JIANG X W, WAN L, et al. Fractionation of Mg isotopes by clay formation and calcite precipitation in groundwater with long residence times in a sandstone aquifer,Ordos Basin,China[J]. Geochimica et Cosmochimica Acta, 2018, 237:261-274.
    doi: 10.1016/j.gca.2018.06.023
    [27] KOHL D H, SHEARER G B, COMMONER B. Fertilizer nitrogen:contribution to nitrate in surface water in a corn belt watershed[J]. Science, 1971, 174:1331-1334.
    doi: 10.1126/science.174.4016.1331
    [28] HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review[J]. Chemical Geology:Isotope Geoscience Section, 1986, 59:87-102.
    doi: 10.1016/0168-9622(86)90059-X
    [29] AMBERGER A, SCHMIDT H L. Natürliche isotopengehalte von nitrat als indikatoren für dessen herkunft[J]. Geochimica et Cosmochimica Acta, 1987, 51(10):2699-2705.
    doi: 10.1016/0016-7037(87)90150-5
    [30] 周迅, 姜月华. 氮、氧同位素在地下水硝酸盐污染研究中的应用[J]. 地球学报, 2007, 28(4):389-395.

    ZHOU X, JIANG Y H. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4):389-395.
    [31] KENDALL C. Tracing nitrogen sources and cycling in catchments[C]//Isotope tracers in catchment hydrology. Amsterdam: Elsevier, 1998:519-576.
    [32] BÖTTCHER J, STREBEL O, VOERKELIUS S, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4):413-424.
    doi: 10.1016/0022-1694(90)90068-9
    [33] XUE D M, de BAETS B, van CLEEMPUT O, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water[J]. Environmental Pollution, 2012, 161:43-49.
    doi: 10.1016/j.envpol.2011.09.033
    [34] KORTH F, DEUTSCH B, FREY C, et al. Nitrate source identification in the Baltic Sea using its isotopic ratios in combination with a Bayesian isotope mixing model[J]. Biogeosciences, 2014, 11(17):4913-4924.
    doi: 10.5194/bg-11-4913-2014
    [35] XIA Y Q, LI Y F, ZHANG X Y, et al. Nitrate source apportionment using a combined dual isotope,chemical and bacterial property,and Bayesian model approach in river systems[J]. Journal of Geophysical Research:Biogeosciences, 2017, 122(1):2-14.
    doi: 10.1002/2016JG003447
    [36] BRIAND C, PLAGNES V, SEBILO M, et al. Combination of nitrate(N,O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater[J]. Environmental Chemistry, 2013, 10(5):365.
    doi: 10.1071/EN13036
    [37] 文冬光. 用环境同位素论区域地下水资源属性[J]. 地球科学, 2002, 27(2):141-147.

    WEN D G. Groundwater resources attribute based on environmental isotopes[J]. Earth Science, 2002, 27(2):141-147.
    [38] 韩永, 王广才, 邢立亭, 等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探, 2009, 37(5):37-42.

    HAN Y, WANG G C, XING L T, et al. Advances in studying groundwater radioisotope dating methods[J]. Coal Geology & Exploration, 2009, 37(5):37-42.
    [39] COLLON P, KUTSCHERA W, LU Z T. Tracing noble gas radionuclides in the environment[J]. Annual Review of Nuclear and Particle Science, 2004, 54(1):39-67.
    doi: 10.1146/annurev.nucl.53.041002.110622
    [40] GLEESON T, BEFUS K M, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2):161-167.
    doi: 10.1038/ngeo2590
    [41] 雷言, 翟远征, 王金生, 等. 年轻地下水定年研究综述[J]. 地球与环境, 2015, 43(2):233-242.

    LEI Y, ZHAI Y Z, WANG J S, et al. A review of young groundwater dating[J]. Earth and Environment, 2015, 43(2):233-242.
    [42] 秦大军. 地下水CFC定年方法及应用[J]. 地下水, 2005, 27(6):435-437.
    [43] 李晶晶, 周爱国, 刘存富, 等. 年轻地下水测年最新技术:SF6法[J]. 水文地质工程地质, 2005, 32(1):94-97.

    LI J J, ZHOU A G, LIU C F, et al. A new method in dating young groudwater:SF6 method[J]. Hydrogeology and Engineering Geology, 2005, 32(1):94-97.
    [44] BAYARI S, OZYURT N N, HATIPOGLU Z, et al. Groundwater age:a vital information in protecting the groundwater dependent ecosystem[J/OL]. Groundwater and Ecosystems, 2006.doi: 10.1007/978-3-030-30215-3_21.
    doi: 10.1007/978-3-030-30215-3_21
    [45] COOK P G, SOLOMON D K. Recent advances in dating young groundwater:chlorofluorocarbons,3H,3He and 85Kr[J]. Journal of Hydrology, 1997, 191(1/2/3/4):245-265.
    doi: 10.1016/S0022-1694(96)03051-X
    [46] 陈宗宇, 齐继祥, 张兆吉, 等. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010.
    [47] LOOSLI H H. A dating method with 39Ar[J]. Earth and Planetary Science Letters, 1983, 63(1):51-62.
    doi: 10.1016/0012-821X(83)90021-3
    [48] 谭忠成, 陆宝宏, 汪集旸, 等. 同位素水文学研究综述[J]. 河海大学学报(自然科学版), 2009, 37(1):16-22.

    TAN Z C, LU B H, WANG J Y, et al. Isotope hydrology:progress and prospects[J]. Journal of Hohai University(Natural Sciences), 2009, 37(1):16-22.
    [49] 陈宗宇, 聂振龙, 张荷生, 等. 从黑河流域地下水年龄论其资源属性[J]. 地质学报, 2004, 78(4):560-567.

    CHEN Z Y, NIE Z L, ZHANG H S, et al. Groundwater renewability based on groundwater ages in the Heihe Valley Alluvial Basin,Northwestern China[J]. Acta Geologica Sinica, 2004, 78(4):560-567.
    [50] 苏小四, 林学钰, 董维红, 等. 银川平原深层地下水14C年龄校正[J]. 吉林大学学报(地球科学版), 2006, 36(5):830-836.

    SU X S, LIN X Y, DONG W H, et al. 14C age correction of deep groundwater in Yinchuan Plain[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(5):830-836.
    [51] 王宗礼, 何建华. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术, 2014, 50(1):6-8.
    [52] 郭娇, 石建省, 王伟. 华北平原地下水年龄校正[J]. 地球学报, 2007, 28(4):396-404.

    GUO J, SHI J S, WANG W. Age correction of the groundwater in North China Plain[J]. Acta Geoscientica Sinica, 2007, 28(4):396-404.
    [53] 刘存富, 王佩仪, 周炼. 河北平原地下水氢、氧、碳、氯同位素组成的环境意义[J]. 地学前缘, 1997, 4(2):267-274.

    LIU C F, WANG P Y, ZHOU L. The environment significance of H,O,C and Cl isotopic composition in groundwater of Hebei Plain[J]. Earth Science Frontiers, 1997, 4(2):267-274.
    [54] MAZOR E. Chemical and isotopic groundwater hydrology[M]. New York: Marcel Dekker Inc, 1997.
    [55] 林晓波, 姜月华, 汤朝阳. 放射性碳同位素在水文地质中的应用进展[J]. 地下水, 2006, 28(3):30-35.

    LIN X B, JIANG Y H, TANG C Y. Application and progress of radio carbon isotopes in the hydrogeology study[J]. Ground Water, 2006, 28(3):30-35.
    [56] 张彦鹏, 周爱国, 周建伟, 等. 石家庄地区地下水中溶解性有机碳同位素特征及其环境指示意义[J]. 水文地质工程地质, 2013, 40(3):12-18.

    ZHANG Y P, ZHOU A G, ZHOU J W, et al. Characteristics of dissolved organic carbon isotope in groundwater in Shijiazhuang and its environmental implications[J]. Hydrogeology & Engineering Geology, 2013, 40(3):12-18.
    [57] 周志超, 云龙, 王驹, 等. 古地下水测年法在高放废物地质处置中的应用[J]. 铀矿地质, 2014, 30(1):57-64.

    ZHOU Z C, YUN L, WANG J, et al. Application of fossil groundwater dating method in the geological disposal of high-level radioactive waste[J]. Uranium Geology, 2014, 30(1):57-64.
    [58] 尚海敏, 李国敏, 于进庆. 环境同位素技术在地下水研究中的应用[J]. 地下水, 2008, 30(2):18-22.

    SHANG H M, LI G M, YU J Q. Applications of environmental isotope in groundwater studying[J]. Ground Water, 2008, 30(2):18-22.
    [59] GUENDOUZ A, MICHELOT J L. Chlorine-36 dating of deep groundwater from northern Sahara[J]. Journal of Hydrology, 2006, 328(3/4):572-580.
    doi: 10.1016/j.jhydrol.2006.01.002
    [60] SHERIF M I, SULTAN M, STURCHIO N C. Chlorine isotopes as tracers of solute origin and age of groundwaters from the Eastern Desert of Egypt[J]. Earth and Planetary Science Letters, 2019, 510:37-44.
    doi: 10.1016/j.epsl.2018.12.035
    [61] 马致远, 张雪莲, 何丹, 等. 关中盆地深层地热水36Cl测年研究[J]. 水文地质工程地质, 2016, 43(1):157-163.

    MA Z Y, ZHANG X L, HE D, et al. A study of 36Cl age for the deep geothermal water in the Guanzhong Basin[J]. Hydrogeology & Engineering Geology, 2016, 43(1):157-163.
    [62] 凌新颖, 马金珠, 杨欢, 等. 古地下水定年新方法:81Kr法[J]. 地质与资源, 2019, 28(1):90-94.

    LING X Y, MA J Z, YANG H, et al. 81Kr:a new method of paleogroundwater dating[J]. Geology and Resources, 2019, 28(1):90-94.
    [63] 李惠娣. 测年方法在地下水中的应用[J]. 水资源与水工程学报, 2008, 19(1):1-6.

    LI H D. Application on dating method in groundwater[J]. Journal of Water Resources and Water Engineering, 2008, 19(1):1-6.
    [64] 廖小青, 刘贯群, 袁瑞强, 等. 同位素测年新发展:81Kr测定古老地下水年龄理论[J]. 工程勘察, 2006, 34(2):31-33.

    LIAO X Q, LIU G Q, YUAN R Q, et al. The new development of isotope dating:to data the old groundwater by 81Kr[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(2):31-33.
    [65] 涂乐义. 地下水溶解氪气分析用于放射性氪同位素测年[D]. 合肥:中国科学技术大学, 2015.
    [66] JIANG W, BAILEY K, LU Z T, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples[J]. Geochimica et Cosmochimica Acta, 2012, 91:1-6.
    doi: 10.1016/j.gca.2012.05.019
    [67] LU Z T, SCHLOSSER P, Jr SMETHIE W M, et al. Tracer applications of noble gas radionuclides in the geosciences[J]. Earth-Science Reviews, 2014, 138:196-214.
    doi: 10.1016/j.earscirev.2013.09.002
    [68] LI J, PANG Z H, YANG G M, et al. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong Basin,China[J]. Science Bulletin, 2017, 62(17):1181-1184.
    doi: 10.1016/j.scib.2017.08.009
    [69] MIKE EDMUNDS W. Limits to the availability of groundwater in Africa[J]. Environmental Research Letters, 2012, 7(2):021003.
    doi: 10.1088/1748-9326/7/2/021003
    [70] 王金生, 翟远征, 滕彦国, 等. 试论地下水更新能力与再生能力[J]. 北京师范大学学报(自然科学版), 2011, 47(2):213-216.

    WANG J S, ZHAI Y Z, TENG Y G, et al. Study on groundwater renewal capacity and reproducibility[J]. Journal of Beijing Normal University(Natural Science), 2011, 47(2):213-216.
    [71] SHI X F, DONG W H, LI M Z, et al. Evaluation of groundwater renewability in the Henan Plains,China[J]. Geochemical Journal, 2012, 46(2):107-115.
    doi: 10.2343/geochemj.1.0154
    [72] HUANG T M, PANG Z H, LI J, et al. Mapping groundwater renewability using age data in the Baiyang Alluvial Fan,NW China[J]. Hydrogeology Journal, 2017, 25(3):743-755.
    doi: 10.1007/s10040-017-1534-z
    [73] FERGUSON G, CUTHBERT M O, BEFUS K, et al. Rethinking groundwater age[J]. Nature Geoscience, 2020, 13(9):592-594.
    doi: 10.1038/s41561-020-0629-7
    [74] LE-GAL-LA-SALLE C, MARLIN C, LEDUC C, et al. Renewal rate estimation of groundwater based on radioactive tracers(3H,14C) in an unconfined aquifer in a semi-arid area,Iullemeden Basin,Niger[J]. Journal of Hydrology, 2001, 254(1/2/3/4):145-156.
    doi: 10.1016/S0022-1694(01)00491-7
    [75] 阮云峰, 赵良菊, 肖洪浪, 等. 黑河流域地下水同位素年龄及可更新能力研究[J]. 冰川冻土, 2015, 37(3):767-782.

    RUAN Y F, ZHAO L J, XIAO H L, et al. The groundwater in the Heihe River basin:isotope age and renewability[J]. Journal of Glaciology and Geocryology, 2015, 37(3):767-782.
    [76] 万玉玉, 苏小四, 董维红, 等. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. 吉林大学学报(地球科学版), 2010, 40(3):623-630.

    WAN Y Y, SU X S, DONG W H, et al. Evaluation of groundwater renewal ability in the Ordos Cretaceous groundwater basin[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3):623-630.
    [77] 陈宗宇, 陈京生, 费宇红, 等. 利用氚估算太行山前地下水更新速率[J]. 核技术, 2006, 29(6):426-431.

    CHEN Z Y, CHEN J S, FEI Y H, et al. Estimation of groundwater renewal rate by tritium in the piedmont plain of the Taihang Mountains[J]. Nuclear Techniques, 2006, 29(6):426-431.
  • 加载中
计量
  • 文章访问数:  759
  • HTML全文浏览量:  174
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回