留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fenton法处理垃圾渗滤液研究进展

王向如 吴丽萍 黄国鲜 高生旺 田自强 张清寰 杨朝科

王向如, 吴丽萍, 黄国鲜, 高生旺, 田自强, 张清寰, 杨朝科. Fenton法处理垃圾渗滤液研究进展[J]. 环境工程技术学报, 2021, 11(5): 942-950. doi: 10.12153/j.issn.1674-991X.20200299
引用本文: 王向如, 吴丽萍, 黄国鲜, 高生旺, 田自强, 张清寰, 杨朝科. Fenton法处理垃圾渗滤液研究进展[J]. 环境工程技术学报, 2021, 11(5): 942-950. doi: 10.12153/j.issn.1674-991X.20200299
Xiangru WANG, Liping WU, Guoxian HUANG, Shengwang GAO, Ziqiang TIAN, Qinghuan ZHANG, Chaoke YANG. Research progress in Fenton process for treating landfill leachate[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 942-950. doi: 10.12153/j.issn.1674-991X.20200299
Citation: Xiangru WANG, Liping WU, Guoxian HUANG, Shengwang GAO, Ziqiang TIAN, Qinghuan ZHANG, Chaoke YANG. Research progress in Fenton process for treating landfill leachate[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 942-950. doi: 10.12153/j.issn.1674-991X.20200299

Fenton法处理垃圾渗滤液研究进展

doi: 10.12153/j.issn.1674-991X.20200299
详细信息
    作者简介:

    王向如(1995—),女,硕士研究生,主要研究方向为水污染控制与资源化, 2734016544@qq.com

    通讯作者:

    吴丽萍 E-mail: wlpzr1106@126.com

  • 中图分类号: X703

Research progress in Fenton process for treating landfill leachate

More Information
    Corresponding author: Liping WU E-mail: wlpzr1106@126.com
  • 摘要: 常规处理方法难以将垃圾渗滤液中的有毒有害污染物彻底降解去除,需要高级氧化技术对其做进一步处理,Fenton法及其衍生方法处理垃圾渗滤液是具有竞争力的。围绕Fenton法及其衍生的相关方法处理垃圾渗滤液的原理、处理效果和技术发展,综述了该技术的最新研究进展,追踪其发展历史、关键技术步骤和最新技术应用动态;对比分析不同衍生处理方法的优缺点。基于不同垃圾渗滤液以及相应的最优工艺条件,综合考虑安全、经济可行和高去除率等问题,指出复合型以及与其他工艺联用的处理方法具有较好的处理效果和应用价值。对Fenton法处理垃圾渗滤液的应用前景和重点研究方向进行了展望,以期为该方法在处理垃圾渗滤液中的技术研发和推广应用提供参考。

     

  • [1] 金宜英, 邴君妍, 罗恩华, 等. 基于分类趋势下的我国生活垃圾处理技术展望[J]. 环境工程, 2019, 37(9):149-153.

    JIN Y Y, BING J Y, LUO E H, et al. Prospects of garbage treatment technologies in China based on the classification tendency[J]. Environmental Engineering, 2019, 37(9):149-153.
    [2] ZACARIAS-FARAH A, GEYER-ALLÉLY E. Household consumption patterns in OECD countries:trends and figures[J]. Journal of Cleaner Production, 2003, 11(8):819-827.
    doi: 10.1016/S0959-6526(02)00155-5
    [3] GONZALEZ-VALENCIA R, MAGANA-RODRIGUEZ F, CRISTÓBAL J, et al. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method[J]. Waste Management, 2016, 55:299-305.
    doi: 10.1016/j.wasman.2016.03.004
    [4] BOONNORAT J, TECHKARNJANARUK S, HONDA R, et al. Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater[J]. Chemosphere, 2018, 202:208-217.
    doi: 10.1016/j.chemosphere.2018.03.084
    [5] BADERNA D, CALONI F, BENFENATI E. Investigating landfill leachate toxicity in vitro:a review of cell models and endpoints[J]. Environment International, 2019, 122:21-30.
    doi: 10.1016/j.envint.2018.11.024
    [6] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment:review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3):468-493.
    doi: 10.1016/j.jhazmat.2007.09.077
    [7] KURNIAWAN T A, LO W H, CHAN G Y S. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate[J]. Journal of Hazardous Materials, 2006, 129(1/2/3):80-100.
    doi: 10.1016/j.jhazmat.2005.08.010
    [8] ABBAS A A, GUO J S, PING L Z, et al. Review on landfill leachate treatments[J]. American Journal of Applied Sciences, 2009, 6(4):672-684.
    [9] 范拴喜, 江元汝. Fenton法的研究现状与进展[J]. 现代化工, 2007, 27(增刊1):104-107.

    FAN S X, JIANG Y R. Study status and progress in Fenton method[J]. Modern Chemical Industry, 2007, 27(Suppl1):104-107.
    [10] DENG Y, ENGLEHARDT J D. Treatment of landfill leachate by the Fenton process[J]. Water Research, 2006, 40(20):3683-3694.
    doi: 10.1016/j.watres.2006.08.009
    [11] XU X R, LI H B, WANG W H, et al. Degradation of dyes in aqueous solutions by the Fenton process[J]. Chemosphere, 2004, 57(7):595-600.
    doi: 10.1016/j.chemosphere.2004.07.030
    [12] DANTAS E R B, SILVA E J, LOPES W S, et al. Fenton treatment of sanitary landfill leachate:optimization of operational parameters,characterization of sludge and toxicology[J]. Environmental Technology, 2020, 41(20):2637-2647.
    doi: 10.1080/09593330.2019.1576773
    [13] JUNG C, DENG Y, ZHAO R Z, et al. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate:Fenton process versus ozonation[J]. Water Research, 2017, 108:260-270.
    doi: 10.1016/j.watres.2016.11.005
    [14] HE R, TIAN B H, ZHANG Q Q, et al. Effect of Fenton oxidation on biodegradability,biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process[J]. Waste Management, 2015, 38(4):232-239.
    doi: 10.1016/j.wasman.2015.01.006
    [15] AFTAB B, SHIN H S, HUR J. Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARAFAC and 2D-COS-FTIR[J]. Journal of Hazardous Materials, 2018, 354:33-41.
    doi: 10.1016/j.jhazmat.2018.04.059
    [16] LIAO Z W, DAI S J, LONG S J, et al. Pd based in situ AOPs with heterogeneous catalyst of FeMgAl layered double hydrotalcite for the degradation of bisphenol A and landfill leachate through multiple pathways[J]. Environmental Science and Pollution Research, 2018, 25(35):35623-35636.
    doi: 10.1007/s11356-018-3454-4
    [17] NIVEDITHA S V, GANDHIMATHI R. Flyash augmented Fe3O4 as a heterogeneous catalyst for degradation of stabilized landfill leachate in Fenton process[J]. Chemosphere, 2020, 242:125189.
    doi: 10.1016/j.chemosphere.2019.125189
    [18] MA C, HE Z G, JIA S Y, et al. Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite[J]. Ecotoxicology and Environmental Safety, 2018, 161(10):489-496.
    doi: 10.1016/j.ecoenv.2018.06.031
    [19] RODRÍGUEZ M, MALATO S, PULGARIN C, et al. Optimizing the solar photo-Fenton process in the treatment of contaminated water:determination of intrinsic kinetic constants for scale-up[J]. Solar Energy, 2005, 79(4):360-368.
    doi: 10.1016/j.solener.2005.02.024
    [20] HERMOSILLA D, CORTIJO M, HUANG C P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Science of the Total Environment, 2009, 407(11):3473-3481.
    doi: 10.1016/j.scitotenv.2009.02.009
    [21] RAHIM P S, ABDUL A A R, WAN D W M A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters[J]. Journal of Industrial and Engineering Chemistry, 2015, 21:53-69.
    doi: 10.1016/j.jiec.2014.05.005
    [22] SEGUNDO I D B, MOREIRA F C, SILVA T F C V, et al. Development of a treatment train for the remediation of a hazardous industrial waste landfill leachate:a big challenge[J]. Science of the Total Environment, 2020, 741:140165.
    doi: 10.1016/j.scitotenv.2020.140165
    [23] 徐蘇士, 汪诚文, 王迪, 等. UV-Fenton工艺对垃圾渗滤液纳滤浓缩液的处理效果及影响因素研究[J]. 环境工程技术学报, 2013, 3(1):65-70.

    XU S S, WANG C W, WANG D, et al. Study on UV-Fenton treatment of concentrated water from nanofiltration of bio-treated landfill leachate[J]. Journal of Environmental Engineering Technology, 2013, 3(1):65-70.
    [24] LAK G M, SABOUR M R, GHAFARI E, et al. Energy consumption and relative efficiency improvement of Photo-Fenton-Optimization by RSM for landfill leachate treatment:a case study[J]. Waste Management, 2018, 79(9):58-70.
    doi: 10.1016/j.wasman.2018.07.029
    [25] da COSTA F M, DAFLON S D A, BILA D M, et al. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes[J]. Waste Management, 2018, 76(6):606-613.
    doi: 10.1016/j.wasman.2018.02.030
    [26] YE Z H, ZHANG H, YANG L, et al. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate[J]. Journal of Hazardous Materials, 2016, 319(12):51-60.
    doi: 10.1016/j.jhazmat.2016.01.027
    [27] POBLETE R, PÉREZ N. Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate[J]. Journal of Environmental Management, 2020, 253:109697.
    doi: 10.1016/j.jenvman.2019.109697
    [28] NIDHEESH P V, GANDHIMATHI R. Trends in electro-Fenton process for water and wastewater treatment:an overview[J]. Desalination, 2012, 299:1-15.
    doi: 10.1016/j.desal.2012.05.011
    [29] BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570-6591.
    doi: 10.1021/cr900136g
    [30] FERNANDES A, LABIADH L, CIRÍACO L, et al. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate:evaluation of operational parameters[J]. Chemosphere, 2017, 184(10):1223-1229.
    doi: 10.1016/j.chemosphere.2017.06.088
    [31] HU Y M, LU Y B, LIU G L, et al. Effect of the structure of stacked electro-Fenton reactor on treating nanofiltration concentrate of landfill leachate[J]. Chemosphere, 2018, 202(7):191-197.
    doi: 10.1016/j.chemosphere.2018.03.103
    [32] HASSAN M, POUS N, XIE B, et al. Employing microbial electrochemical technology-driven electro-Fenton oxidation for the removal of recalcitrant organics from sanitary landfill leachate[J]. Bioresource Technology, 2017, 243:949-956.
    doi: 10.1016/j.biortech.2017.07.042
    [33] WANG Z, LI J B, TAN W H, et al. Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis[J]. Separation and Purification Technology, 2019, 208:3-11.
    doi: 10.1016/j.seppur.2018.06.048
    [34] BAIJU A, GANDHIMATHI R, RAMESH S T, et al. Combined heterogeneous electro-Fenton and biological process for the treatment of stabilized landfill leachate[J]. Journal of Environmental Management, 2018, 210:328-337.
    doi: 10.1016/j.jenvman.2018.01.019
    [35] KATEB M, TRELLU C, DARWICH A, et al. Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates[J]. Water Research, 2019, 162(10):446-455.
    doi: 10.1016/j.watres.2019.07.005
    [36] JOSHI S M, GOGATE P R. Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes[J]. Separation and Purification Technology, 2019, 211:10-18.
    doi: 10.1016/j.seppur.2018.09.060
    [37] ABRAMOVITCH R A, HUANG B Z, ABRAMOVITCH D A, et al. In situ decomposition of PCBs in soil using microwave energy[J]. Chemosphere, 1999, 38(10):2227-2236.
    doi: 10.1016/S0045-6535(98)00441-X
    [38] LAI T L, LIU J Y, YONG K F, et al. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature[J]. Journal of Hazardous Materials, 2008, 157(2/3):496-502.
    doi: 10.1016/j.jhazmat.2008.01.009
    [39] KAWALA Z, ATAMAŃCZUK T. Microwave-enhanced thermal decontamination of soil[J]. Environmental Science & Technology, 1998, 32(17):2602-2607.
    doi: 10.1021/es980025m
    [40] ZHANG A P, GU Z P, CHEN W M, et al. Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by microwave-Fenton process[J]. Environmental Science and Pollution Research, 2018, 25(29):28907-28916.
    doi: 10.1007/s11356-018-2900-7
    [41] CHEN W M, ZHANG A P, GU Z P, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by FeO/H2O2 coupled with microwave irradiation[J]. Chemical Engineering Journal, 2018, 354:680-691.
    doi: 10.1016/j.cej.2018.08.012
    [42] XU X C, ZHANG H T, DONG Z Y, et al. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon[J]. Environmental Technology, 2013, 34(20):2853-2858.
    doi: 10.1080/09593330.2013.795986
    [43] ZHA F G, YAO D X, HU Y B, et al. Integration of US/Fe2+ and photo-Fenton in sequencing for degradation of landfill leachate[J]. Water Science and Technology, 2016, 73(2):260-266.
    doi: 10.2166/wst.2015.487
    [44] BRILLAS E, SIRÉS I. Electrochemical removal of pharmaceuticals from water streams:reactivity elucidation by mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2015, 70:112-121.
    doi: 10.1016/j.trac.2015.01.013
    [45] GARCIA-SEGURA S, BRILLAS E. Combustion of textile monoazo,diazo and triazo dyes by solar photoelectro-Fenton:decolorization,kinetics and degradation routes[J]. Applied Catalysis B:Environmental, 2016, 181:681-691.
    doi: 10.1016/j.apcatb.2015.08.042
    [46] MOREIRA F C, SOLER J, FONSECA A, et al. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate[J]. Water Research, 2015, 81:375-387.
    doi: 10.1016/j.watres.2015.05.036
    [47] PHAM A N, XING G W, MILLER C J, et al. Fenton-like copper redox chemistry revisited:hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production[J]. Journal of Catalysis, 2013, 301:54-64.
    doi: 10.1016/j.jcat.2013.01.025
    [48] BANDALA E R, PELÁEZ M A, DIONYSIOU D D, et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 186(2/3):357-363.
    doi: 10.1016/j.jphotochem.2006.09.005
    [49] WATTS R J, SARASA J, LOGE F J, et al. Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions[J]. Journal of Environmental Engineering, 2005, 131(1):158-164.
    doi: 10.1061/(ASCE)0733-9372(2005)131:1(158)
    [50] ARMSTRONG W A. Relative rate constants for reactions of hydroxyl radicals from the reaction of Fe(Ⅱ) or Ti(Ⅲ) with H2O2[J]. Canadian Journal of Chemistry, 1969, 47(20):3737-3744.
    doi: 10.1139/v69-623
    [51] LISTER M W. Decomposition of sodium hypochlorite:the catalyzed reaction[J]. Canadian Journal of Chemistry, 1956, 34(4):479-488.
    doi: 10.1139/v56-069
    [52] WALLING C, CAMAIONI D M. Role of silver(Ⅱ) in silver-catalyzed oxidations by peroxydisulfate[J]. Journal of Organic Chemistry, 1978, 43(17):3266-3271.
    doi: 10.1021/jo00411a003
    [53] KATTEL E, DULOVA N. Ferrous ion-activated persulphate process for landfill leachate treatment:removal of organic load,phenolic micropollutants and nitrogen[J]. Environmental Technology, 2017, 38(10):1223-1231.
    doi: 10.1080/09593330.2016.1221472
    [54] BOURECHECH Z, ABDELMALEK F, GHEZZAR M R, et al. Treatment of leachate from municipal solid waste of Mostaganem district in Algeria:decision support for advising a process treatment[J]. Waste Management & Research, 2018, 36(1):68-78.
    [55] LEE S D, MALLAMPATI S R, LEE B H. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite[J]. Journal of the Air & Waste Management Association, 2017, 67(4):475-487.
    [56] ISHAK A R, HAMID F S, MOHAMAD S, et al. Removal of organic matter from stabilized landfill leachate using Coagulation-Flocculation-Fenton coupled with activated charcoal adsorption[J]. Waste Management & Research, 2017, 35(7):739-746.
    [57] LIU X J, NOVAK J T, HE Z. Synergistically coupling membrane electrochemical reactor with Fenton process to enhance landfill leachate treatment[J]. Chemosphere, 2020, 247:125954.
    doi: 10.1016/j.chemosphere.2020.125954
    [58] ISMAIL S, TAWFIK A. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system[J]. Water Science and Technology, 2016, 73(7):1700-1708.
    doi: 10.2166/wst.2015.655
    [59] HU W Y, ZHOU Y, MIN X B, et al. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate[J]. Environmental Technology, 2018, 39(15):1926-1936.
    doi: 10.1080/09593330.2017.1344325
  • 加载中
计量
  • 文章访问数:  410
  • HTML全文浏览量:  82
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回