留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微米零价铁去除磷酸盐效果与机理研究

简志强 周高婷 龚斌 赵颖

简志强, 周高婷, 龚斌, 赵颖. 微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报, 2021, 11(5): 927-934. doi: 10.12153/j.issn.1674-991X.20210027
引用本文: 简志强, 周高婷, 龚斌, 赵颖. 微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报, 2021, 11(5): 927-934. doi: 10.12153/j.issn.1674-991X.20210027
Zhiqiang JIAN, Gaoting ZHOU, Bin GONG, Ying ZHAO. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 927-934. doi: 10.12153/j.issn.1674-991X.20210027
Citation: Zhiqiang JIAN, Gaoting ZHOU, Bin GONG, Ying ZHAO. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 927-934. doi: 10.12153/j.issn.1674-991X.20210027

微米零价铁去除磷酸盐效果与机理研究

doi: 10.12153/j.issn.1674-991X.20210027
详细信息
    作者简介:

    简志强(1996—),男,硕士研究生,主要从事水处理材料研发及应用研究, jian315126@163.com

    通讯作者:

    赵颖 E-mail: zhaoying@craes.org.cn

  • 中图分类号: X524

Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism

More Information
    Corresponding author: Ying ZHAO E-mail: zhaoying@craes.org.cn
  • 摘要: 为探究微米零价铁除磷效果与机理,首先考察了水化学条件对微米零价铁除磷效果的影响;其次研究了微米零价铁对磷的去除效果以及酸盐磷在磁性固体和悬浮固体中的动态分配情况,并通过监测不同浓度反应体系中理化参数(pH、DO、ORP)的变化,进一步分析了体系中的反应过程;最后通过扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等表征手段对反应产物进行了分析。结果表明:较低pH能显著提高微米零价铁的反应活性,加快磷的去除;离子强度的增加可加快反应速率; AsO 4 3 - SiO 3 2 -对微米零价铁除磷具有明显的抑制作用, SO 4 2 -影响很小,而 NO 3 - CO 3 2 -有一定的促进作用。被去除的磷酸盐在反应产物磁性固体和悬浮固体中的浓度接近。SEM分析表明,有磷条件与无磷条件下反应产物固体表面形貌具有明显区别。XPS分析表明,微米零价铁除磷过程中主要生成了Fe2+铁和Fe3+。1,10-菲啰啉掩蔽试验结果表明,磷酸盐与Fe2+结合是微米零价铁除磷的主要途径。XRD分析发现生成了H2FeP2O7,说明微米零价铁除磷存在沉淀作用。

     

  • [1] AWUAL M R. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent[J]. Journal of Cleaner Production, 2019, 228:1311-1319.
    doi: 10.1016/j.jclepro.2019.04.325
    [2] 郑丙辉. “十二五”太湖富营养化控制与治理研究思路及重点[J]. 环境科学研究, 2014, 27(7):683-687.
    [3] ZHANG Z H, WANG Y, LESLIE G L, et al. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors[J]. Water Research, 2015, 69:210-222.
    doi: 10.1016/j.watres.2014.11.011
    [4] PARK T, AMPUNAN V, MAENG S, et al. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal[J]. Chemosphere, 2017, 167:91-97.
    doi: 10.1016/j.chemosphere.2016.09.150
    [5] 刘宁, 陈小光, 崔彦召, 等. 化学除磷工艺研究进展[J]. 化工进展, 2012, 31(7):1597-1603.

    LIU N, CHEN X G, CUI Y Z, et al. Research progress of chemical dephosphorization process[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1597-1603.
    [6] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment:a review[J]. Journal of Hazardous Materials, 2014, 267:194-205.
    doi: 10.1016/j.jhazmat.2013.12.062
    [7] JI Y. Ions removal by iron nanoparticles:a study on solid-water interface with zeta potential[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 444:1-8.
    doi: 10.1016/j.colsurfa.2013.12.031
    [8] GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades(1994-2014)[J]. Water Research, 2015, 75:224-248.
    doi: 10.1016/j.watres.2015.02.034
    [9] HU Y, ZHAN G M, PENG X, et al. Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC2O4·2H2O shell[J]. Chemical Engineering Journal, 2020, 389:124414.
    doi: 10.1016/j.cej.2020.124414
    [10] WU Z D, TANG Y B, YUAN X J, et al. Reduction of bromate by zero valent iron(ZVI) enhances formation of brominated disinfection by-products during chlorination[J]. Chemosphere, 2021, 268:129340.
    doi: 10.1016/j.chemosphere.2020.129340
    [11] 孟凡生, 王业耀, 李莉. PRB去除模拟地下水中六价铬的反应特性[J]. 环境工程技术学报, 2013, 3(2):92-97.

    MENG F S, WANG Y Y, LI L. Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology, 2013, 3(2):92-97.
    [12] KIM I, CHA D K. Effect of low temperature on abiotic and biotic nitrate reduction by zero-valent iron[J]. Science of the Total Environment, 2021, 754:142410.
    doi: 10.1016/j.scitotenv.2020.142410
    [13] LI Y M, GUO X J, DONG H Y, et al. Selenite removal from groundwater by zero-valent iron(ZVI) in combination with oxidants[J]. Chemical Engineering Journal, 2018, 345:432-440.
    doi: 10.1016/j.cej.2018.03.187
    [14] HE Y, GAO J F, FENG F Q, et al. The comparative study on the rapid decolorization of azo,anthraquinone and triphenylmethane dyes by zero-valent iron[J]. Chemical Engineering Journal, 2012, 179:8-18.
    doi: 10.1016/j.cej.2011.05.107
    [15] HUANG Y H, PEDDI P K, TANG C L, et al. Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater[J]. Separation and Purification Technology, 2013, 118:690-698.
    doi: 10.1016/j.seppur.2013.07.009
    [16] 张颖纯, 王伟. 纳米零价铁颗粒除磷反应机理[J]. 环境工程学报, 2015, 9(5):2041-2047.

    ZHANG Y C, WANG W. Mechanism of phosphorus removal by nanoscale zero-valent iron(nZVI)[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2041-2047.
    [17] WU D L, SHEN Y H, DING A, et al. Phosphate removal from aqueous solutions by nanoscale zero-valent iron[J]. Environmental Technology, 2013, 34(18):2663-2669.
    doi: 10.1080/09593330.2013.786103
    [18] ALMEELBI T, BEZBARUAH A. Aqueous phosphate removal using nanoscale zero-valent iron[J/OL]//Nanotechnology for Sustainable Development, 2014.doi: 10.1007/978-3-030-30215-3_21.
    doi: 10.1007/978-3-030-30215-3_21
    [19] WEN Z P, ZHANG Y L, DAI C M. Removal of phosphate from aqueous solution using nanoscale zerovalent iron(nZVI)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:433-440.
    doi: 10.1016/j.colsurfa.2014.06.017
    [20] LIU H B, CHEN T H, ZOU X H, et al. Removal of phosphorus using nZVI derived from reducing natural goethite[J]. Chemical Engineering Journal, 2013, 234:80-87.
    doi: 10.1016/j.cej.2013.08.061
    [21] NAGOYA S, NAKAMICHI S, KAWASE Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron:a novel kinetic model for electrostatic adsorption,surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology, 2019, 218:120-129.
    doi: 10.1016/j.seppur.2019.02.042
    [22] YOSHINO H, TOKUMURA M, KAWASE Y. Simultaneous removal of nitrate,hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron[J]. Journal of Environmental Science and Health Part A:Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(9):998-1006.
    [23] JEONG J Y, AHN B M, KIM Y J, et al. Continuous phosphorus removal from water by physicochemical method using zero valent iron packed column[J]. Water Science and Technology, 2014, 70(5):895-900.
    doi: 10.2166/wst.2014.310
    [24] SLEIMAN N, DELUCHAT V, WAZNE M, et al. Phosphate removal from aqueous solutions using zero valent iron(ZVI):influence of solution composition and ZVI aging[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 514:1-10.
    doi: 10.1016/j.colsurfa.2016.11.014
    [25] SLEIMAN N, DELUCHAT V, WAZNE M, et al. Phosphate removal from aqueous solution using ZVI/sand bed reactor:behavior and mechanism[J]. Water Research, 2016, 99:56-65.
    doi: 10.1016/j.watres.2016.04.054
    [26] WANG J B, XU J, XIA J, et al. A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension[J]. Chemical Geology, 2018, 495:67-75.
    doi: 10.1016/j.chemgeo.2018.08.003
    [27] 赵蓉, 王妍, 杨桂英, 等. 磷输入对湖滨底泥砷形态转化及生态风险的影响[J]. 环境科学研究, 2019, 32(8):1395-1401.

    ZHAO R, WANG Y, YANG G Y, et al. Effects of phosphate input on the speciation transformations and related ecological risks of arsenic in the sediment of lakeside wetland[J]. Research of Environmental Sciences, 2019, 32(8):1395-1401.
    [28] SLEIMAN N, DELUCHAT V, WAZNE M, et al. Role of iron oxidation byproducts in the removal of phosphate from aqueous solution[J]. RSC Advances, 2016, 6(2):1627-1636.
    doi: 10.1039/C5RA22444F
    [29] PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1):284-290.
    doi: 10.1021/es061349a
    [30] SARATHY V, TRATNYEK P G, NURMI J T, et al. Aging of iron nanoparticles in aqueous solution:effects on structure and reactivity[J]. The Journal of Physical Chemistry C, 2008, 112(7):2286-2293.
    doi: 10.1021/jp0777418
    [31] GROSSEAU-POUSSARD J L, PANICAUD B, PEDRAZA F, et al. Iron oxidation under the influence of phosphate thin films[J]. Journal of Applied Physics, 2003, 94(1):784-788.
    doi: 10.1063/1.1579126
    [32] GIACOMELLI C, SPINELLI A. A potentiodynamic and SEM study of the behaviour of iron in pH 8.9-11.0 phosphate solutions[J]. Anti-Corrosion Methods and Materials, 2004, 51(3):189-199.
    doi: 10.1108/00035590410533138
    [33] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
    doi: 10.1016/j.apsusc.2007.09.063
    [34] PENG X, XI B D, ZHAO Y, et al. Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment[J]. Environmental Science & Technology, 2017, 51(17):10100-10108.
    doi: 10.1021/acs.est.7b02635
    [35] SHAO Q Q, XU C H, WANG Y H, et al. Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen:mechanistic insights for enhanced chromate removal[J]. Water Research, 2018, 135:322-330.
    doi: 10.1016/j.watres.2018.02.030
    [36] DU J K, BAO J G, LU C H, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles[J]. Water Research, 2016, 102:73-81.
    doi: 10.1016/j.watres.2016.06.009
  • 加载中
计量
  • 文章访问数:  530
  • HTML全文浏览量:  187
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回