初沉池优化运行对改良型A2/O工艺脱氮除磷的影响

李航, 董立春, 方建飞, 丁力, 吕利平

李航, 董立春, 方建飞, 丁力, 吕利平. 初沉池优化运行对改良型A2/O工艺脱氮除磷的影响[J]. 环境工程技术学报, 2021, 11(6): 1189-1195. DOI: 10.12153/j.issn.1674-991X.20210038
引用本文: 李航, 董立春, 方建飞, 丁力, 吕利平. 初沉池优化运行对改良型A2/O工艺脱氮除磷的影响[J]. 环境工程技术学报, 2021, 11(6): 1189-1195. DOI: 10.12153/j.issn.1674-991X.20210038
LI Hang, DONG Lichun, FANG Jianfei, DING Li, LÜ Liping. Effect of optimizing operation of primary sedimentation tank on nitrogen and phosphorus removal of modified A2/O process[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1189-1195. DOI: 10.12153/j.issn.1674-991X.20210038
Citation: LI Hang, DONG Lichun, FANG Jianfei, DING Li, LÜ Liping. Effect of optimizing operation of primary sedimentation tank on nitrogen and phosphorus removal of modified A2/O process[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1189-1195. DOI: 10.12153/j.issn.1674-991X.20210038

初沉池优化运行对改良型A2/O工艺脱氮除磷的影响

详细信息
    作者简介:

    李航(1986—),男,工程师,博士,研究方向为水处理理论与技术, lihang0213@163.com

    通讯作者:

    董立春 E-mail: lcdong72@cqu.edu.cn

  • 中图分类号: X703

Effect of optimizing operation of primary sedimentation tank on nitrogen and phosphorus removal of modified A2/O process

More Information
    Corresponding author:

    DONG Lichun E-mail: lcdong72@cqu.edu.cn

  • 摘要: 采用改良型A2/O工艺处理城市污水,设置6种工况,即原水进入初沉池与超越初沉池直接进入生物池流量分配比分别为10∶0、8∶2、6∶4、4∶6、2∶8、0∶10,在具体工程实例中考察初沉池优化运行对脱氮除磷效果的影响。结果表明:初沉池的优化运行对出水总氮浓度和生物除磷率具有显著影响,而对出水氨氮浓度影响较小。工艺中存在反硝化除磷现象,且反硝化除磷率与原水超越初沉池直接进入生物池流量分配比呈正相关。基于6种工况,较为优化的原水进入初沉池与超越初沉池直接进入生物池流量分配比为6∶4。该工况后期出水总氮平均浓度为8.79 mg/L,较原工况降低了33.9%,氨氮浓度低于0.5 mg/L,好氧区总磷平均浓度为0.34 mg/L,满足GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准;电耗为0.337 kW·h/m3,仅比原工况上涨了5.31%,涨幅较小。相比于原工况,虽然电耗出现了轻微上涨,但出水水质可控性得到了进一步强化,且显著优于一级A排放标准。
    Abstract: The modified A2/O process was used to treat urban sewage, and the effect of optimized operation of primary sedimentation tank (PST) on nitrogen and phosphorus removal were investigated in the specific engineering example. Six different operation conditions were adopted in the test, namely, the flow distribution ratio of raw water entering PST to that directly entering the biological tank stepping over PST were 10∶0, 8∶2, 6∶4, 4∶6, 2∶8 and 0∶10, respectively. The results showed that the optimized operation of PST had significant influence on the concentration of total nitrogen in the effluent and the efficiency of biological phosphorus removal, but had little influence on the ammonia nitrogen concentration. The phenomenon of denitrifying phosphorus removal existed in the experimental process, and the denitrifying phosphorus removal rate was positively related to the flow distribution ratio of raw water stepping over PGT directly entering the biological tank. Among the six different conditions, the more optimal flow distribution ratio of raw water entering PST to that directly entering the biological tank stepping over PST was 6:4. In the later stage of this condition, the average concentration of total nitrogen in the effluent was 8.79 mg/L, which was 33.9% lower than the original condition; the concentration of ammonia nitrogen was lower than 0.50 mg/L, and the average concentration of total phosphorus in aerobic area was 0.34 mg/L, which met the first level A standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002); the power consumption was 0.337 kW·h/m3, which was only 5.31% higher than the original operation condition, with a small increase. Compared with the original condition, although the power consumption slightly increased, the controllability of the effluent water quality was further strengthened, and it was significantly better than the discharge standard of the first level A.
  • [1]

    HE Q L, SONG Q, ZHANG S L, et al. Simultaneous nitrification,denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources:reactor performance,extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331:841-849.
    doi: 10.1016/j.cej.2017.09.060

    [2] 郭晓娅, 年跃刚, 闫海红, 等. 以玉米淀粉废水为反硝化碳源的污染物降解特征与微生物群落结构研究[J]. 环境工程技术学报, 2016, 6(5):427-433.

    GUO X Y, NIAN Y G, YAN H H, et al. Pollutants degradation characteristics and microbial community structure using cornstarch wastewater as denitrification carbon source[J]. Journal of Environmental Engineering Technology, 2016, 6(5):427-433.

    [3] 赵蓉, 郑涛, 孙晨, 等. 沈阳得利满AO工艺升级为改良A2O工艺的可行性研究[J]. 环境工程技术学报, 2016, 6(6):547-552.

    ZHAO R, ZHENG T, SUN C, et al. Feasibility study on modified A2O process to upgrade and reconstruct Shenyang degremont anoxic oxic process[J]. Journal of Environmental Engineering Technology, 2016, 6(6):547-552.

    [4]

    BU F, HU X, XIE L, et al. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal[J]. Journal of Zhejiang University:Science B, 2015, 16(4):304-316.
    doi: 10.1631/jzus.B1400106

    [5]

    XIE J Y, GUO Y, LI Y F. The role of external carbon sources at each stage of an A2/O process for simultaneously removing nitrogen and phosphorus[J]. Environmental Progress & Sustainable Energy, 2018, 37(6):2010-2015.

    [6] 常洋, 王彤, 王海燕, 等. 芦苇碳源-表面流人工湿地对农田退水脱氮的长期效能研究[J]. 环境工程技术学报, 2016, 6(5):453-461.

    CHANG Y, WANG T, WANG H Y, et al. The long-term nitrogen removal efficiency from agricultural runoff in phragmites australis packed surface flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2016, 6(5):453-461.

    [7] 马玉霞, 谭蕾蕾, 沈志强, 等. Ca(OH)2预处理的秸秆作为固体碳源的反硝化性能[J]. 环境工程技术学报, 2017, 7(2):46-52.

    MA Y X, TAN L L, SHEN Z Q, et al. Study on denitrification performance using calcium hydroxide pretreated straw as solid carbon source[J]. Journal of Environmental Engineering Technology, 2017, 7(2):46-52.

    [8] 李易寰, 奚蕾蕾, 钟奕杰, 等. 倒置A2/O工艺运行效果及优化控制方案[J]. 环境工程, 2020, 38(3):76-81.

    LI Y H, XI L L, ZHONG Y J, et al. Operation effect and control scheme optimization of an inverted A2/O process[J]. Environmental Engineering, 2020, 38(3):76-81.

    [9]

    HU X, SOBOTKA D, CZERWIONKA K, et al. Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes[J]. Journal of Zhejiang University:Science B, 2018, 19(4):305-316.
    doi: 10.1631/jzus.B1700064

    [10] 黄庆涛, 宋秀兰. 外加碳源对AOA-SBR工艺脱氮除磷效果的影响[J]. 工业水处理, 2017, 37(9):26-29.

    HUANG Q T, SONG X L. Influences of extra carbon sources on the removal of nitrogen and phosphate by AOA-SBR process[J]. Industrial Water Treatment, 2017, 37(9):26-29.

    [11] 顾学林. 低C/N值污水处理的总氮达标研究[J]. 中国给水排水, 2019, 35(9):96-99.

    GU X L. Discharge standard achievement of TN in treatment of sewage with low C/N ratio[J]. China Water & Wastewater, 2019, 35(9):96-99.

    [12]

    WU C Y, PENG Y Z, LI X L, et al. Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic-anoxic-oxic (A2O) process[J]. Journal of Environmental Engineering, 2010, 136(11):1248-1254.
    doi: 10.1061/(ASCE)EE.1943-7870.0000262

    [13]

    JOHN K D, ZHANG H, LI Y F. The external carbon source to each stages of A2/O process for simultaneously nitrogen and phosphorus removal[J]. Journal of Agriculture and Environmental Sciences, 2019, 8(1):140-153.

    [14] 杨杰, 李冬, 罗亚红, 等. SBR后置缺氧反硝化除磷的启动及去除性能[J]. 中国环境科学, 2016, 36(5):1376-1383.

    YANG J, LI D, LUO Y H, et al. The start-up and performance of denitrifying phosphorus removal process in a post-anoxic SBR system[J]. China Environmental Science, 2016, 36(5):1376-1383.

    [15]

    WISNIEWSKI K, KOWALSKI M, MAKINIA J. Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors[J]. Water Research, 2018, 142:55-64.
    doi: 10.1016/j.watres.2018.05.041

    [16]

    PANSWAD T, TONGKHAMMAK N, ANOTAI J. Estimation of intracellular phosphorus content of phosphorus-accumulating organisms at different P:COD feeding ratios[J]. Journal of Environmental Management, 2007, 84(2):141-145.
    doi: 10.1016/j.jenvman.2006.05.013

    [17] 楚想想, 罗丽, 王晓昌, 等. 我国城镇污水处理厂的能耗现状分析[J]. 中国给水排水, 2018, 34(7):70-74.

    CHU X X, LUO L, WANG X C, et al. Analysis on current energy consumption of wastewater treatment plants in China[J]. China Water & Wastewater, 2018, 34(7):70-74.

  • 期刊类型引用(12)

    1. 蒋富海,张显忠,张勇,沈冬梅. 某污水处理厂“厂网户源”系统降碳减污的运行实践. 中国市政工程. 2025(01): 80-87+147-148 . 百度学术
    2. 马迁,闫宝亨,杨洋,李增辉,戴捷,涂军桥. 不同工艺处理辛辣类调味品废水及辣椒素抑制性研究. 水处理技术. 2024(02): 111-115 . 百度学术
    3. 张元斌. 罗甸县农村人居环境整治现状及污水处理提升建议. 农技服务. 2024(04): 106-110 . 百度学术
    4. 齐震,刘汝鹏,徐林煦,房金峰,朱炜臣,樊浩宇,乔一木. 诱导结晶法回收磷的影响因素及应用研究进展. 工业水处理. 2024(09): 41-49 . 百度学术
    5. 王婷,王磊,邱立平,郑伟杰,卢立泉,张鑫. 污水处理厂准Ⅳ类提标及扩建设计. 山东建筑大学学报. 2024(06): 123-130 . 百度学术
    6. 戴爱泉. 城镇污水处理厂工艺方案设计与优化. 节能与环保. 2023(02): 93-94 . 百度学术
    7. 邓祥意,张臻悦,池汝安,肖春桥,胡锦刚,张秋桐. 风化壳淋积型稀土矿闭矿场铵盐淋出液脱氮研究进展. 金属矿山. 2022(04): 1-12 . 百度学术
    8. 肖艳. 缓释碳源促进生物反硝化脱氮技术研究进展. 环境工程技术学报. 2022(03): 760-768 . 本站查看
    9. 张民安,袁忠玲,张明,秦彦荣,吴新波,赵凯亮,陈永志. 响应面法优化多级A/O+BAF系统处理生活污水强化脱氮除磷. 环境科学研究. 2022(05): 1233-1244 . 百度学术
    10. 程学慧. 内蒙古某新能源产业示范园区污水处理工艺及效率研究. 节能. 2022(05): 71-74 . 百度学术
    11. 何春求,周少奇. 改良A~2/O—MBR工艺仿真模拟及运行优化. 中国给水排水. 2022(15): 90-97 . 百度学术
    12. 卢瑞朋,徐文江,李安峰,董娜,孙光溪. 内循环比对反硝化除磷工艺处理效果和群落结构的影响. 环境科学研究. 2022(08): 1845-1853 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  593
  • HTML全文浏览量:  189
  • PDF下载量:  47
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-02-07
  • 发布日期:  2021-11-19
  • 刊出日期:  2021-11-29

目录

    /

    返回文章
    返回