Agricultural ammonia emission inventory and characteristics analysis of typical cities in Huanghuai Plain: take Bozhou City as an example
-
摘要: 亳州市是黄淮平原典型城市,而农业是其最大的氨排放来源。基于亳州市畜禽养殖、氮肥施用、固氮植物、土壤本底、秸秆堆肥、人体粪便6类农业源活动水平数据与排放因子,建立2011—2018年亳州市农业源氨排放清单,分析该市氨排放结构、空间分布、历年变化趋势及不确定性,进一步深入了解黄淮平原典型城市农业氨排放特征。结果表明:2018年亳州市农业氨排放总量为27 529.19 t/a,其中畜禽养殖与氮肥施用是农业氨排放量较大的2类源,占比分别为68.81%、16.85%。农业氨排放集中在利辛县与谯城区,分别占全市总排放量的28.9%、27.8%。亳州市农业氨排放量从2011年的35 097.97 t/a小幅升至2014年的38 441.13 t/a,2015—2017年变化不大,2018年降至27 529.19 t/a。从各类农业源氨排放量变化趋势来看,2011—2018年秸秆堆肥、土壤本底的氨排放量出现微小涨幅,畜禽养殖、氮肥施用、固氮植物、人体粪便的氨排放量呈下降趋势。此外,2011—2018年亳州市农业源清单的不确定性处于-22%~26%,清单不确定性较小。Abstract: Bozhou City is a typical city in Huanghuai Plain, and agriculture is the largest source of ammonia emission. In order to further understand the agricultural ammonia emission characteristics of typical cities in Huanghuai Plain, based on the activity data and emission factors of six types of agricultural sources including livestock and poultry breeding, nitrogen fertilizer application, nitrogen-fixing plants, soil background, straw compost and human manure, the ammonia emission inventory of agricultural sources in Bozhou City from 2011 to 2018 was established to analyze the emission structure, spatial patterns, historical trends and their uncertainties. The results showed that the total ammonia emissions from agricultural sources in Bozhou City in 2018 were 27 529.19 t/a, of which livestock and poultry breeding and nitrogen fertilizer application were the two major sources of agricultural ammonia emissions, accounting for 68.81% and 16.85%, respectively. The emissions were concentrated in Lixin County and Qiaocheng District, accounting for 28.9% and 27.8% of the total emissions of Bozhou City, respectively. The total agricultural ammonia emissions of Bozhou City rose slightly from 35 097.97 t/a in 2011 to 38 441.13 t/a in 2014; from 2015 to 2017, there was little change; and in 2018, it decreased to 27 529.19 t/a. Among various types of sources, ammonia emissions of straw compost and soil background showed a slight increase from 2011 to 2018, while livestock and poultry breeding, nitrogen fertilizer application, nitrogen-fixing plants, and human manure showed a decreasing trend. In addition, the uncertainty range of Bozhou agricultural ammonia emission inventory from 2011 to 2018 was between -22% and 26%, which was small.
-
[1] HAMAOUI-LAGUEL L, MELEUX F, BEEKMANN M, et al. Improving ammonia emissions in air quality modelling for France[J]. Atmospheric Environment, 2014, 92:584-595.
doi: 10.1016/j.atmosenv.2012.08.002[2] BISWAS K F, GHAURI B M, HUSAIN L. Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere[J]. Atmospheric Environment, 2008, 42(33):7775-7785.
doi: 10.1016/j.atmosenv.2008.04.056[3] FANG M, CHAN C K, YAO X H. Managing air quality in a rapidly developing nation:China[J]. Atmospheric Environment, 2009, 43(1):79-86.
doi: 10.1016/j.atmosenv.2008.09.064[4] BATTYE W, ANEJA V P, ROELLE P A. Evaluation and improvement of ammonia emissions inventories[J]. Atmospheric Environment, 2003, 37(27):3873-3883.
doi: 10.1016/S1352-2310(03)00343-1[5] PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China:measurements,sources,visibility and health effects,and mitigation [J]. Particuology, 2014, 13:1-26.
doi: 10.1016/j.partic.2013.11.001[6] YE X N, MA Z, ZHANG J C, et al. Important role of ammonia on haze formation in Shanghai[J]. Environmental Research Letters, 2011, 6(2):024019.
doi: 10.1088/1748-9326/6/2/024019[7] CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate forcing by anthropogenic aerosols[J]. Science, 1992, 255:423-430.
doi: 10.1126/science.255.5043.423[8] KIRKBY J, CURTIUS J, ALMEIDA J, et al. Role of sulphuric acid,ammonia and galactic cosmic rays in atmospheric aerosol nucleation[J]. Nature, 2011, 476:429-433.
doi: 10.1038/nature10343[9] KULMALA M. Aerosol formation during PARFORCE:ternary nucleation of H2SO4,NH3,and H2O [J]. Journal of Geophysical Research Atmospheres, 2002, 107(19):8111.
doi: 10.1029/2001JD000900[10] ANEJA V P, NELSON D R, ROELLE P A, et al. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the Southeast United States[J]. Journal of Geophysical Research Atmospheres, 2003.doi: 10.1029/2002JD002271.
doi: 10.1029/2002JD002271[11] BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere:a review on emission sources,atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11):8092-8131.
doi: 10.1007/s11356-013-2051-9[12] HELLSTEN S, DRAGOSITS U, PLACE C J, et al. Modelling the spatial distribution of ammonia emissions in the UK[J]. Environmental Pollution, 2008, 154(3):370-379.
doi: 10.1016/j.envpol.2008.02.017[13] ZHAO D W, WANG A P. Estimation of anthropogenic ammonia emissions in Asia[J]. Atmospheric Environment, 1994, 28(4):689-694.
doi: 10.1016/1352-2310(94)90045-0[14] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012.doi: 10.1029/2011gb004161. [15] ZHANG L, CHEN Y F, ZHAO Y H, et al. Agricultural ammonia emissions in China:reconciling bottom-up and top-downestimates[J]. Atmospheric Chemistry and Physics, 2018, 18(1):339-355.
doi: 10.5194/acp-18-339-2018[16] MA S Y. High-resolution assessment of ammonia emissions in China:inventories,driving forces and mitigation[J]. Atmospheric Environment, 2020, 229:117458.
doi: 10.1016/j.atmosenv.2020.117458[17] XU P, ZHANG Y S, GONG W W, et al. An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution[J]. Atmospheric Environment,2015, 115:141-148.
doi: 10.1016/j.atmosenv.2015.05.020[18] 董艳强, 陈长虹, 黄成, 等. 长江三角洲地区人为源氨排放清单及分布特征[J]. 环境科学学报, 2009, 29(8):1611-1617.DONG Y Q, CHEN C H, HUANG C, et al. Anthropogenic emissions and distribution of ammonia over the Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2009, 29(8):1611-1617. [19] 尹沙沙, 郑君瑜, 张礼俊, 等. 珠江三角洲人为氨源排放清单及特征[J]. 环境科学, 2010, 31(5):1146-1151.YIN S S, ZHENG J Y, ZHANG L J, et al. Anthropogenic ammonia emission inventory and characteristics in the Pearl River Delta Region[J]. Environmental Science, 2010, 31(5):1146-1151. [20] ZHOU Y, CHENG S Y, LANG J L, et al. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei(BTH)Region,China[J]. Atmospheric Environment, 2015, 106:305-317.
doi: 10.1016/j.atmosenv.2015.01.069[21] 覃思, 孔少飞, 吴剑, 等. 1996—2016年湖北省氨排放时空差异及影响因素[J]. 中国环境科学, 2020, 40(4):1403-1413.QIN S, KONG S F, WU J, et al. Spatial-temporal diversities of ammonia emissions and impacting factors in Hubei Province from 1996 to 2016[J]. China Environmental Science,2020, 40(4):1403-1413. [22] 侯新红, 于兴娜, 沈丽, 等. 2013—2017年江苏省人为源氨排放清单的建立及特征[J]. 环境科学, 2019, 40(11):4862-4869.HOU X H, YU X N, SHEN L, et al. Establishment and characteristics of an artificial ammonia emissions inventory in Jiangsu Province from 2013 to 2017[J]. Environmental Science,2019, 40(11):4862-4869. [23] WANG C, YIN S S, BAI L, et al. High-resolution ammonia emission inventories with comprehensive analysis and evaluation in Henan,China, 2006-2016[J]. Atmospheric Environment,2018, 193:11-23.
doi: 10.1016/j.atmosenv.2018.08.063[24] 刘春蕾, 杨峰. 南京市2013年人为源大气氨排放清单及特征[J]. 安徽农业科学, 2015, 43(29):263-266.LIU C L, YANG F. Nanjing anthropogenic ammonia emission inventory and its characteristics in 2013[J]. Journal of Anhui Agricultural Sciences, 2015, 43(29):263-266. [25] 周静, 刘松华, 谭译, 等. 苏州市人为源氨排放清单及其分布特征[J]. 环境科学研究, 2016, 29(8):1137-1144.ZHOU J, LIU S H, TAN Y, et al. Anthropogenic ammonia emission inventory and its spatial distribution in Suzhou City[J]. Research of Environmental Sciences, 2016, 29(8):1137-1144. [26] 苏航, 闫东杰, 黄学敏, 等. 西安市人为源大气氨排放清单及特征[J]. 环境科学, 2016, 37(11):4117-4123.SU H, YAN D J, HUANG X M, et al. Inventory and characteristics of anthropogenic ammonia emission in Xi’an[J]. Environmental Science, 2016, 37(11):4117-4123. [27] 董婧, 孙长虹, 王永刚, 等. 北京市典型农业区域大气环境氨浓度动态变化分析[J]. 环境工程技术学报, 2017, 7(3):262-267.DONG J, SUN C H, WANG Y G, et al. Dynamics of atmospheric ammonia concentrations over representative agricultural region in Beijing[J]. Journal of Environmental Engineering Technology, 2017, 7(3):262-267. [28] 生态环境部. 大气氨源排放清单编制技术指南(试行)[A/OL].(2014-08-20)[2020-08-10]. http://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293771578.pdf. [29] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009, 106(19):8077.
doi: 10.1073/pnas.0902655106[30] 高榕. 山东省农业源氨排放清单及其减排潜力研究[D]. 济南: 济南大学, 2018:15-58. [31] KANG Y N, LIU M X, SONG Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics,2016, 16(4):2043-2058.
doi: 10.5194/acp-16-2043-2016[32] 尤翔宇, 刘湛, 张青梅, 等. 长株潭地区人为源氨排放清单及分布特征[J]. 环境科学, 2016, 37(1):94-101.YOU X Y, LIU Z, ZHANG Q M, et al. Anthropogenic ammonia emission inventory and its spatial distribution in Chang-Zhu-Tan Region[J]. Environmental Science, 2016, 37(1):94-101. [33] 郑志侠, 翁建宇, 汪水兵, 等. 安徽省农田生态系统氨排放研究[J]. 安徽农业大学学报, 2016, 43(4):562-567.ZHENG Z X, WENG J Y, WANG S B, et al. Study on ammonia emission from the farmland ecosystem in Anhui Province[J]. Journal of Anhui Agricultural University, 2016, 43(4):562-567. [34] 周伟. 前三季度全省农业生产总体平稳生猪产能大幅下滑[EB/OL].( 2019-11-12)[ 2021-02-08]. http://tjj.ah.gov.cn/public/6981/145100191.html. [35] 陈丹丹. 亳州市大多数规模养殖场已完成整改任务[EB/OL].( 2018-08-31)[ 2021-02-08]. http://ah.ifeng.com/a/20180831/6847812_0.shtml. [36] 管梦爽. 忻州市人为源VOC S物种排放清单及不确定性分析 [D]. 北京: 华北电力大学(北京), 2019:4-5. [37] HOU X H, YU X N. An ammonia emissions inventory for agricultural sources in Hefei,China[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3):260-267.
doi: 10.1080/16742834.2020.1747355[38] MISSELBROOK T H, SUTTON M A, SCHOLEFIELD D. A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications[J]. Soil Use and Management, 2006, 20(4):365-372.
doi: 10.1111/j.1475-2743.2004.tb00385.x
点击查看大图
计量
- 文章访问数: 512
- HTML全文浏览量: 224
- PDF下载量: 79
- 被引次数: 0