Prediction of construction and demolition waste production based on material flow analysis
-
摘要: 针对建筑垃圾产生量激增但其统计数据缺失问题,基于1stOpt拟合平台和Visual Basic编程软件,构建城镇住宅和非住宅建筑垃圾产生量动态预测模型,定量模拟不同建筑寿命情景下建筑垃圾产生量及其组分的变化趋势。结果表明:我国城镇住宅建筑和非住宅建筑存量面积分别在2058年和2064年达到峰值(657.35亿和569.41亿m2)。在短、中、长建筑寿命情景下,住宅和非住宅建筑的新建面积均在21世纪20年代达到峰值,拆除面积峰值将在21世纪下半叶实现。在短、中、长寿命3种情景下,我国城镇住宅建筑垃圾总产量分别于2072年、2081年和2100年达到峰值(28.69亿、21.71亿和16.50亿t);非住宅建筑垃圾总产量分别于2077年、2084年和2100年达到峰值(26.25亿、20.29亿、15.48亿t)。2000年之前,建筑垃圾主要成分为施工垃圾,2000年之后,以拆除垃圾为主,至2100年拆除垃圾占比达98%。其中,混凝土、砖块、钢铁分别占44%~71%、22%~51%、0.50%~2.89%,其他成分占2.76%~4.68%。综合考虑建筑流量发展趋势和建筑垃圾产生特征,政府部门应宏观调控减缓人均建筑面积增长速度,延长建筑使用寿命,提高建筑垃圾循环利用率和二次建材原料的市场消纳量,从而减少建筑垃圾产生量,降低建筑垃圾对生态环境的破坏。Abstract: In response to the rapid increase in the amount of construction and demolition waste (C&DW) and the lack of statistical data on the output of C&DW, based on the 1stOpt fitting platform and Visual Basic programming software, a dynamic prediction model of urban residential and non-residential construction waste was constructed, and the changing trend of C&DW production and its compositions under three scenarios of short lifetime, medium lifetime and long lifetime quantitatively simulated. The results showed that: The stock area of urban residential buildings and non-residential buildings in China would reach their peaks in 2058 and 2064, respectively, with the peaks of 65.74 billion m2 and 56.94 billion m2. Under the short lifetime, medium lifetime and long lifetime scenarios, the construction area of residential and non-residential buildings would reach their peaks in 2020s, and the demolition area would peak in the second half of this century. The total output of China’s urban residential C&DW would reach its peak in 2072, 2081 and 2100 under the three scenarios of short lifetime, medium lifetime and long lifetime, respectively, with peaks of 2.869 billion tons, 2.171 billion tons and 1.65 billion tons. Under the three scenarios, the total output of non-residential C&DW would reach peaks in 2077, 2084 and 2100, with a total output of 2.625 billion tons, 2.029 billion tons and 1.548 billion tons, respectively. Before 2000, C&DW was mainly composed of construction waste. After 2000, demolition waste was the main composition. By 2100, the proportion of demolition waste would reach 98%. Among them, concrete, bricks, and steel accounted for 44%-71%, 22%-51%, 0.50%-2.89%, and other compositions accounted for about 2.76%-4.68%. Taking into account the development trend of construction flow and the characteristics of C&DW generation, the government departments should slow down the growth rate of per capita building area through macro-control, prolong the service life of buildings, improve the recycling rate of C&DW and the market consumption of secondary buildings materials, so as to cut down the output of C&DW and reduce their damage to the ecological environment.
-
[1] 邰俊. 中国城市环境卫生行业年度发展研究报告(2015—2016)[M]. 上海: 上海交通大学出版社, 2017. [2] 崔德芹, 杨中青. 回收利用建筑垃圾,发展循环经济[J]. 工业技术经济, 2006, 25(10):35-36. [3] PARISI K A, FERREIRA D M, PIVA K M, et al. Waste generated in high-rise buildings construction:a quantification model based on statistical multiple regression[J]. Waste Management, 2015, 39:35-44.
doi: 10.1016/j.wasman.2015.01.043[4] 张红玉, 杨飞华, 李国学, 等. 基于ARIMA模型的北京市朝阳区建筑垃圾产量分析与预测[J]. 环境工程, 2014, 32(增刊1):696-699.ZHANG H Y, YANG F H, LI G X, et al. Analysis and forecast of construction waste production based on the ARIMA model in Chaoyang District[J]. Environmental Engineering, 2014, 32(Suppl 1):696-699. [5] 左浩坤, 付双立. 北京市建筑垃圾产生量预测及处置设施建设分布研究[J]. 环境卫生工程, 2011, 19(2):63-64.ZUO H K, FU S L. Output forecast of construction waste in Beijing and constructing and distributing of its disposal facilities[J]. Environmental Sanitation Engineering, 2011, 19(2):63-64. [6] 向维, 杨延梅, 刘俊. 重庆市建筑垃圾现状及产生量预测研究[J]. 环境卫生工程, 2020, 28(4):105-109.XIANG W, YANG Y M, LIU J. Research on present situation and production predict of construction and demolition debris in Chongqing[J]. Environmental Sanitation Engineering, 2020, 28(4):105-109. [7] 王桂琴, 张红玉, 李国学, 等. 灰色模型在北京市建筑垃圾产生量预测中的应用[J]. 环境工程, 2009, 27(增刊1):508-511.WANG G Q, ZHANG H Y, LI G X, et al. The prediction by gray model on the production of construction and demolition waste of Beijing[J]. Environmental Engineering, 2009, 27(Suppl 1):508-511. [8] SONG Y L, WANG Y, LIU F, et al. Development of a hybrid model to predict construction and demolition waste:China as a case study[J]. Waste Management, 2017, 59:350-361.
doi: 10.1016/j.wasman.2016.10.009[9] HU M M, BERGSDAL H, van der VOET E, et al. Dynamics of urban and rural housing stocks in China[J]. Building Research & Information, 2010, 38(3):301-317. [10] BERGSDAL H, BOHNE R A, BRATTEBØ H. Projection of construction and demolition waste in Norway[J]. Journal of Industrial Ecology, 2008, 11(3):27-39.
doi: 10.1162/jiec.2007.1149[11] CAO Z, SHEN L, ZHONG S, et al. A probabilistic dynamic material flow analysis model for Chinese urban housing stock[J]. Journal of Industrial Ecology, 2018, 22(2):377-391.
doi: 10.1111/jiec.2018.22.issue-2[12] HUANG T, SHI F, TANIKAWA H, et al. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis[J]. Resources,Conservation and Recycling, 2013, 72:91-101.
doi: 10.1016/j.resconrec.2012.12.013[13] 王秋菲, 王盛楠, 石丹. 基于灰色理论的建筑垃圾产生量的预测研究[J]. 沈阳建筑大学学报(社会科学版), 2015, 17(5):518-523.WANG Q F, WANG S N, SHI D. Forecast of construction waste output generated based on gray theory[J]. Journal of Shenyang Jianzhu University (Social Science), 2015, 17(5):518-523. [14] 李宜博. 北京市建筑存量演化及驱动因素分析[D]. 北京: 北京工业大学, 2019. [15] MÜLLER B D. Stock dynamics for forecasting material flows:case study for housing in the Netherlands[J]. Ecological Economics, 2006, 59(1):142-156.
doi: 10.1016/j.ecolecon.2005.09.025[16] 党春阁, 周长波, 吴昊, 等. 重金属元素物质流分析方法及案例分析[J]. 环境工程技术学报, 2014, 4(4):341-345.DANG C G, ZHOU C B, WU H, et al. Methods of substance flow analysis of heavy metal elements and case study[J]. Journal of Environmental Engineering Technology, 2014, 4(4):341-345. [17] 解蕾, 姚扬, 但智钢, 等. 基于物质流和能量流分析的典型工业园区循环经济发展评价[J/OL]. 环境工程技术学报. [2021-04-17]. http://kns.cnki.net/kcms/detail/11.5972.X.20201124.1510.002.html . [18] 国务院. 国务院关于印发国家人口发展规划(2016—2030年)的通知[J]. 中华人民共和国国务院公报, 2017(6):24-35. [19] United Nations Population Division. World population prospects 2019[R]. New York: United Nations, 2019. [20] United Nations Population Division. World urbanization prospects:the 2018 revision[R]. New York: United Nations, 2018. [21] 李晓超. 中国统计年鉴(2001)[M]. 北京: 中国统计出版社,2001. [22] 建设部发布2005年城镇房屋概况统计公报[J]. 城市规划通讯, 2006(13):10. [23] 杨崴. 可持续性建筑存量演进模型研究:以中国建筑存量为例[D]. 天津: 天津大学, 2006. [24] FISHMAN T, SCHANDL H, TANIKAWA H, et al. Accounting for the material stock of nations[J]. Journal of Industrial Ecology, 2014, 18(3):407-420.
doi: 10.1111/jiec.2014.18.issue-3[25] VÁSQUEZ F, LØVIK A N, SANDBERG N H, et al. Dynamic type-cohort-time approach for the analysis of energy reductions strategies in the building stock[J]. Energy and Buildings, 2016, 111:37-55.
doi: 10.1016/j.enbuild.2015.11.018[26] ERIK BRADLEY P, KOHLER N. Methodology for the survival analysis of urban building stocks[J]. Building Research & Information, 2007, 35(5):529-542. [27] CAI W J, WAN L Y, JIANG Y K, et al. Short-lived buildings in China:impacts on water,energy,and carbon emissions[J]. Environmental Science & Technology, 2015, 49(24):13921-13928.
doi: 10.1021/acs.est.5b02333[28] HASHIMOTO S, TANIKAWA H, MORIGUCHI Y. Where will large amounts of materials accumulated within the economy go:a material flow analysis of construction minerals for Japan[J]. Waste Management, 2007, 27(12):1725-1738.
doi: 10.1016/j.wasman.2006.10.009[29] TANIKAWA H, FISHMAN T, OKUOKA K, et al. The weight of society over time and space:a comprehensive account of the construction material stock of Japan,1945-2010[J]. Journal of Industrial Ecology, 2015, 19(5):778-791.
doi: 10.1111/jiec.12284[30] KAPUR A, KEOLEIAN G, KENDALL A, et al. Dynamic modeling of in-use cement stocks in the United States[J]. Journal of Industrial Ecology, 2008, 12(4):539-556.
doi: 10.1111/jiec.2008.12.issue-4[31] SARKAR S, CHAMBERLAIN J F, MILLER S A. A comparison of two methods to conduct material flow analysis on waste tires in a small island developing state[J]. Journal of Industrial Ecology, 2011, 15(2):300-314.
doi: 10.1111/j.1530-9290.2010.00323.x[32] 国家统计局. 中国2000年人口普查数据[M]. 北京: 中国统计出版社, 2008. [33] 国家统计局. 中国2010年人口普查资料[M]. 北京: 中国统计出版社, 2020. [34] 国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020. [35] 李晓超. 新中国六十年统计资料汇编[M]. 北京: 中国统计出版社, 2010. [36] 国家统计局. 改革开放40年经济社会发展成就[R]. 北京: 国家统计局, 2018. [37] YANG D, GUO J, SUN L W, et al. Urban buildings material intensity in China from 1949 to 2015[J]. Resources,Conservation and Recycling, 2020, 159:104824.
doi: 10.1016/j.resconrec.2020.104824[38] SHI J G, XU Y Z. Estimation and forecasting of concrete debris amount in China[J]. Resources,Conservation and Recycling, 2006, 49(2):147-158.
doi: 10.1016/j.resconrec.2006.03.011[39] 住房和城乡建设部. 建筑结构可靠性设计统一标准: GB 50068—2018[S].北京:中国建筑工业出版社, 2018. [40] 中华人民共和国城镇国有土地使用权出让和转让暂行条例[J]. 中华人民共和国国务院公报, 1990(10):355-361. [41] 宋春华. 全寿命高品质:坚持以人为本,实行住宅性能认定[J]. 住宅科技, 2004, 24(9):3-7.SONG C H. Whole life and high grade quality:stick to the idea of giving first consideration for the people and implement housing performance certification[J]. Housing Science, 2004, 24(9):3-7. [42] 胡鸣明, 彭峰, 向鹏成. 建筑废弃物产量预测及资源化处理厂选址布局优化:以重庆市主城为例[J]. 环境工程, 2020, 38(1):122-127.HU M M, PENG F, XIANG P C. Estimation of construction and demolition waste generation and site optimization of recycling plants:a case study of Chongqing metropolis,China[J]. Environmental Engineering, 2020, 38(1):122-127. [43] 唐守娟, 张力小, 郝岩, 等. 城市住宅建筑系统流量-存量动态模拟:以北京市为例[J]. 生态学报, 2019, 39(4):1240-1247.TANG S J, ZHANG L X, HAO Y, et al. Dynamic modeling of stock and flow in an urban residential building system:a case study of Beijing[J]. Acta Ecologica Sinica, 2019, 39(4):1240-1247.
点击查看大图
计量
- 文章访问数: 884
- HTML全文浏览量: 372
- PDF下载量: 98
- 被引次数: 0