Characterization of the spatio-temporal variations of total phosphorus concentrations and influencing factors analysis in Tuojiang River Basin, an upstream tributary of the Three Gorges Reservoir
-
摘要: 沱江是三峡水库上游重要的入库河流和主要的总磷(TP)来源,研究沱江流域TP时空变化特性及其成因对三峡水库TP入库污染物允许通过量达标和流域TP污染治理具有重要意义。利用2011—2018年沱江流域干支流20个国控和省控监测断面的水质数据和断面汇流区污染源数据,采用Pearson相关性分析法、单因素分析法和层次聚类分析法,综合分析了沱江流域TP浓度时空分布特性及其影响因素。结果表明:2011—2018年,沱江流域TP污染已从上游绵远河、石亭江、鸭子河和中游釜溪河扩展到全流域,沱江干流上游主要受TP污染严重的支流汇入影响,TP浓度沿干流持续升高,在三皇庙断面出现浓度峰值〔(0.251±0.213)mg/L〕,中游和下游TP浓度表现出沿程波动的趋势,分别在银山镇〔(0.194±0.048)mg/L〕和大磨子断面〔(0.232±0.057)mg/L〕出现极值;沱江流域TP浓度总体表现为枯水期>丰水期,枯水期与丰水期TP浓度差异性显著(P<0.05);面源污染对沱江流域中下游内江、自贡和泸州段TP浓度的影响较大,点源污染主要影响上游干流成都市与资阳市区段以及内江市、自贡市境内支流的TP浓度。Abstract: The Tuojiang River is an important inflow river and the primary sources of total phosphorus (TP) in the upper reaches of the Three Gorges Reservoir. The study on the spatio-temporal variation characteristics and causes of TP concentrations in Tuojiang River Basin is important for the up-to-standard control of allowable throughput of TP in the Three Gorges Reservoir and the control of TP pollution in the basin. Based on the water quality data of 20 national and provincial monitoring sections of the trunk and tributaries in Tuojiang River Basin and pollution source data in the confluence area, the spatio-temporal distribution characteristics and influencing factors of TP concentrations in Tuojiang River Basin were comprehensively analyzed, using statistical methods, including correlation analysis, single factor analysis, and hierarchical cluster analysis. The results showed that from 2011 to 2018, the pollution of TP in Tuojiang River Basin had spread from the upper reaches of Mianyuan River, Shiting River, Duck River and the middle reach of Fuxi River to the entire basin. TP in the upper mainstream of Tuojiang River was primarily affected by the inflow of tributaries with serious TP pollution. TP concentrations increased continuously along the mainstream of Tuojiang River and reached the maximum in Sanhuangmiao section with (0.251±0.213) mg/L. TP concentrations floated in the middle and downstream reaches with concentration peaks occurred at sections of Yinshanzhen ((0.194±0.048) mg/L) and Damozi ((0.232±0.057) mg/L). TP concentrations in the flood seasons were higher than those in the dry seasons. The differences of TP concentrations between the flood and the dry seasons were significant with P<0.05. Non-point sources pollution contributed more on TP in Neijiang, Zigong, and Luzhou sections in the middle and lower reaches of Tuojiang River Basin. Point sources discharges mainly affected TP concentrations in Chengdu and Ziyang sections of the upstream trunk stream and tributaries in Neijiang and Zigong.
-
表 1 2011—2018年沱江流域干支流各监测断面TP浓度
Table 1. TP concentrations in the monitoring sections at the main and tributary streams of Tuojiang River from 2011-2018
河段 断面 2011年 2012年 2013年 2014年 2015年 2016年 2017年 2018年 2011—2018年 枯水期 丰水期 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差 上游 三皇庙 0.097 0.023 0.113 0.055 0.244 0.059 0.308 0.067 0.312 0.069 0.371 0.124 0.308 0.121 0.242 0.088 0.251 0.213 0.217 0.108 宏缘 0.309 0.109 0.181 0.026 0.204 0.050 0.256 0.028 0.286 0.070 0.312 0.081 0.241 0.077 0.209 0.110 0.249 0.088 0.219 0.063 拱城铺
渡口0.147 0.019 0.155 0.012 0.157 0.017 0.191 0.041 0.261 0.059 0.306 0.031 0.244 0.086 0.163 0.034 0.203 0.071 0.193 0.069 中游 幸福村 0.164 0.018 0.143 0.011 0.156 0.012 0.164 0.015 0.249 0.033 0.269 0.039 0.219 0.057 0.164 0.033 0.191 0.054 0.176 0.042 顺河场 0.159 0.036 0.153 0.036 0.154 0.029 0.246 0.085 0.286 0.085 0.273 0.044 0.242 0.085 0.188 0.143 0.213 0.093 0.185 0.054 银山镇 0.198 0.039 0.174 0.001 0.168 0.012 0.183 0.013 0.197 0.023 0.261 0.039 0.221 0.071 0.146 0.028 0.194 0.048 0.18 0.035 脚仙村 0.233 0.048 0.301 0.084 0.171 0.056 0.269 0.049 0.258 0.060 0.281 0.035 0.242 0.074 0.164 0.037 0.240 0.074 0.228 0.084 下游 釜沱口前 0.205 0.043 0.282 0.085 0.173 0.051 0.234 0.044 0.241 0.047 0.250 0.027 0.233 0.065 0.168 0.045 0.223 0.064 0.214 0.079 李家湾 0.214 0.052 0.275 0.072 0.173 0.048 0.239 0.046 0.247 0.047 0.253 0.026 0.235 0.054 0.155 0.038 0.224 0.063 0.218 0.073 大磨子 0.27 0.051 0.283 0.043 0.219 0.036 0.228 0.03 0.229 0.034 0.253 0.036 0.221 0.048 0.144 0.051 0.232 0.057 0.241 0.064 沱江大桥 0.25 0.048 0.27 0.052 0.208 0.031 0.239 0.036 0.227 0.039 0.247 0.033 0.229 0.038 0.149 0.027 0.227 0.052 0.225 0.057 支流 八角 0.218 0.173 0.157 0.035 0.187 0.124 0.163 0.087 0.402 0.323 0.168 0.096 0.180 0.147 0.143 0.051 0.202 0.174 0.147 0.128 双江桥 0.214 0.113 0.167 0.028 0.338 0.119 0.419 0.106 0.487 0.323 0.356 0.127 0.255 0.104 0.221 0.101 0.307 0.183 0.279 0.193 三川 0.215 0.123 0.166 0.018 0.323 0.125 0.411 0.106 0.423 0.23 0.310 0.154 0.245 0.114 0.212 0.06 0.289 0.158 0.232 0.109 三邑大桥 0.138 0.044 0.079 0.037 0.098 0.041 0.116 0.034 0.138 0.062 0.128 0.051 0.119 0.033 0.098 0.043 0.104 0.043 0.124 0.049 梓桐村 0.077 0.033 0.097 0.043 0.188 0.023 0.226 0.027 0.263 0.063 0.242 0.107 0.222 0.103 0.175 0.041 0.199 0.093 0.163 0.076 球溪河口 0.242 0.081 0.17 0.116 0.173 0.01 0.186 0.007 0.232 0.042 0.419 0.119 0.402 0.104 0.290 0.203 0.264 0.134 0.217 0.078 廖家堰 1.014 0.546 1.334 1.239 0.375 0.224 0.353 0.149 0.312 0.118 0.373 0.196 0.237 0.082 0.189 0.119 0.606 0.818 0.341 0.229 碳研所 0.989 0.529 0.939 0.405 0.433 0.303 0.443 0.09 0.491 0.427 0.371 0.088 0.402 0.192 0.231 0.123 0.563 0.408 0.477 0.284 胡市大桥 0.271 0.109 0.308 0.168 0.214 0.089 0.211 0.053 0.219 0.085 0.212 0.064 0.193 0.037 0.134 0.033 0.22 0.102 0.195 0.103 表 2 沱江干支流各监测断面水质指标Pearson相关性
Table 2. Pearson correlation of water quality indexes at each monitoring section of the main and tributary streams of Tuojiang River
指标 流量 DO 水温 pH 电导率 CODMn CODCr TN TP 流量 1 DO −0.077**
(n=1 488)1 水温 0.369**
(n=793)−0.216**
(n=816)1 pH 0.053*
(n=1 488)0.231**
(n=1 631)0.057
(n=816)1 电导率 −0.139**
(n=1 280)−0.103**
(n=1 423)−0.103**
(n=813)−0.006
(n=1 423)1 CODMn −0.04
(n=1482)−0.305**
(n=1 625)0.171**
(n=816)0.050*
(n=1 625)0.097**
(n=1 423)1 CODCr −0.152**
(n=1 488)−0.213**
(n=1 631)0.045
(n=816)−0.079**
(n=1 631)0.153**
(n=1 423)0.594**
(n=1 625)1 TN −0.132**
(n=1 442)−0.268**
(n=1 585)−0.03
(n=813)0.042
(n=1 585)0.217**
(n=1 405)0.418**
(n=1 579)0.487**
(n=1 585)1 TP −0.136**
(n=1 488)−0.278**
(n=1 631)−0.047
(n=816)−0.038
(n=1 631)0.193**
(n=1 423)0.364**
(n=1 625)0.418**
(n=1 631)0.545**
(n=1 585)1 注:n表示对应参数的统计样本数;**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 -
[1] 佟洪金, 魏峣, 袁小燕, 等.四川仁寿球溪河流域总磷形态特征研究[J]. 四川环境,2019,38(4):23-29.TONG H J, WEI Y, YUAN X Y, et al. Study on the characteristics of total phosphorus in the Qiuxi River Basin, Renshou, Sichuan[J]. Sichuan Environment,2019,38(4):23-29. [2] 蒋红斌, 余全智, 何鑫, 等. 遂宁涪江流域总磷时空分布及环境容量研究[J]. 环境科学与技术, 2018, 41(增刊2): 100-103.JIANG H B, YU Q Z, HE X, et al. Study on the distribution characteristics and environmental capacity of the total phosphorus of Fujiang River in Suining[J]. Environmental Science & Technology, 2018, 41(Suppl 2): 100-103. [3] 杨耿. 岷江及沱江水系磷形态分布特征研究[D]. 北京: 中国环境科学研究院, 2018. [4] BOWES M J, SMITH J T, NEAL C, et al. Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working[J]. Science of the Total Environment,2011,409(18):3418-3430. doi: 10.1016/j.scitotenv.2011.04.049 [5] 秦延文, 马迎群.沱江上游(德阳段)磷污染特征及影响因素分析[J]. 磷肥与复肥,2020,35(8):15-18. doi: 10.3969/j.issn.1007-6220.2020.08.005QIN Y W, MA Y Q. Characteristics and effecting factors of phosphorus pollution in upstream of Tuojiang River (Deyang section)[J]. Phosphate & Compound Fertilizer,2020,35(8):15-18. doi: 10.3969/j.issn.1007-6220.2020.08.005 [6] 秦延文, 马迎群, 温泉, 等.沱江流域总磷污染负荷、成因及控制对策研究[J]. 环境科学与管理,2020,45(2):20-25. doi: 10.3969/j.issn.1673-1212.2020.02.005QIN Y W, MA Y Q, WEN Q, et al. Pollution load, causes and control strategy of total phosphorus pollution in Tuojiang River Basin[J]. Environmental Science and Management,2020,45(2):20-25. doi: 10.3969/j.issn.1673-1212.2020.02.005 [7] 单保庆, 菅宇翔, 唐文忠, 等.北运河下游典型河网区水体中氮磷分布与富营养化评价[J]. 环境科学,2012,33(2):352-358.SHAN B Q, JIAN Y X, TANG W Z, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment in downstream river network areas of North Canal River Watershed[J]. Environmental Science,2012,33(2):352-358. [8] LE T P Q, HO C T, DUONG T T, et al. Nutrient budgets (N and P) for the Nui Coc Reservoir Catchment (North Vietnam)[J]. Agricultural Water Management,2014,142:152-161. doi: 10.1016/j.agwat.2014.04.014 [9] ZHU B, WANG Z H, ZHANG X B. Phosphorus fractions and release potential of ditch sediments from different land uses in a small catchment of the Upper Yangtze River[J]. Journal of Soils and Sediments,2012,12(2):278-290. doi: 10.1007/s11368-011-0449-x [10] 邹卓序. 沱江流域水环境综合治理案例研究[D]. 成都: 电子科技大学, 2019. [11] 雷俊山, 王顺天, 贾海燕, 等.长江流域水库富营养化调查与评价[J]. 水利水电快报,2020,41(1):78-83.LEI J S, WANG S T, JIA H Y, et al. Investigation and evaluation of reservoirs eutrophication in Yangtze River Basin[J]. Express Water Resources & Hydropower Information,2020,41(1):78-83. [12] 秦延文, 赵艳民, 马迎群, 等.三峡水库氮磷污染防治政策建议: 生态补偿·污染控制·质量考核[J]. 环境科学研究,2018,31(1):1-8.QIN Y W, ZHAO Y M, MA Y Q, et al. Prevention and control of nitrogen, phosphorus pollution in the Three Gorges Reservoir: ecological compensation, pollution control, quality assessment[J]. Research of Environmental Sciences,2018,31(1):1-8. [13] XU X B, TAN Y, YANG G S. Environmental impact assessments of the Three Gorges Project in China: issues and interventions[J]. Earth-Science Reviews,2013,124:115-125. doi: 10.1016/j.earscirev.2013.05.007 [14] 徐青, 刘霞, 余晓平, 等.沱江沉积物-水界面磷形态垂向分布及时空变化特征[J]. 岩矿测试,2019,38(6):668-680.XU Q, LIU X, YU X P, et al. Vertical distribution of phosphorus species at the sediment-water interface of the Tuojiang River and its spatial and temporal characteristics[J]. Rock and Mineral Analysis,2019,38(6):668-680. [15] 符东, 吴雪菲, 易珍言, 等.沱江水质模糊综合评价及主要污染物的预测研究[J]. 农业环境科学学报,2020,39(12):2844-2852. doi: 10.11654/jaes.2020-0730FU D, WU X F, YI Z Y, et al. Fuzzy comprehensive assessment of water quality and prediction of main pollutants in the Tuo River[J]. Journal of Agro-Environment Science,2020,39(12):2844-2852. doi: 10.11654/jaes.2020-0730 [16] REN C P, WANG L J, ZHENG B H, et al. Ten-year change of total phosphorous pollution in the Min River, an upstream tributary of the Three Gorges Reservoir[J]. Environmental Earth Sciences,2016,75(12):1-11. [17] 四川省统计局国家统计局四川调查总队. 四川统计年鉴(2010)[M]. 北京: 中国统计出版社, 2010. [18] ORDERUD G I, VOGT R D. Trans-disciplinarity required in understanding, predicting and dealing with water eutrophication[J]. International Journal of Sustainable Development & World Ecology,2013,20(5):404-415. [19] WITHERS P J A, HAYGARTH P M. Agriculture, phosphorus and eutrophication: a European perspective[J]. Soil Use and Management,2007,23(s1):1-4. doi: 10.1111/j.1475-2743.2007.00116.x [20] 范力, 段慧, 张丹, 等.沱江干流水质自动监测断面水质状况分析[J]. 环境影响评价,2019,41(4):70-73.FAN L, DUAN H, ZHANG D, et al. Analysis on the water quality of the main stream of Tuo River under automatic monitoring[J]. Environmental Impact Assessment,2019,41(4):70-73. [21] 肖宇婷,谌书,樊敏.沱江流域污染负荷时空变化特征研究[J/OL].环境科学学报,2021.[2021-03-25].http://doi.org/10.13671/j.hjkxxb.2020.0454.XIAO Y T,CHEN S,FAN M.Temporally and spatially varied characteristics of pollution load in Tuojiang River Basin[J/OL].Acta Scientiae Circumstantiae,2021.[2021-03-25].http://doi.org/10.13671/j.hjkxxb.2020.0454. [22] 陈雨艳, 余恒, 向秋实, 等.沱江流域水环境质量分析[J]. 四川环境,2015,34(2):85-89. doi: 10.3969/j.issn.1001-3644.2015.02.017CHEN Y Y, YU H, XIANG Q S, et al. Evaluation of water quality of Tuojiang River[J]. Sichuan Environment,2015,34(2):85-89. doi: 10.3969/j.issn.1001-3644.2015.02.017 [23] 谢培, 宫健, 陈诚.北京市农业面源污染负荷特征分析及控制分区[J]. 环境工程技术学报,2020,10(4):613-622. doi: 10.12153/j.issn.1674-991X.20190139XIE P, GONG J, CHEN C. Analysis of pollution load characteristics and control zones division of agricultural non-point sources in Beijing City[J]. Journal of Environmental Engineering Technology,2020,10(4):613-622. doi: 10.12153/j.issn.1674-991X.20190139 [24] 刘魏魏, 郭子良, 王大安, 等. 衡水湖湿地水环境质量时空变化特征及污染源分析[J]. 环境科学, 2021, 42(3): 1361-1371.LIU W W, GUO ZL, WANG D A, et al Spatial-temporal variation of water environment quality and pollution source analysis in Hengshui Lake[J]. Environmental Science. 2021, 42(3)1361-1371. [25] 胡芸芸, 王永东, 李廷轩, 等.沱江流域农业面源污染排放特征解析[J]. 中国农业科学,2015,48(18):3654-3665. doi: 10.3864/j.issn.0578-1752.2015.18.009HU Y Y, WANG Y D, LI T X, et al. Characteristics analysis of agricultural nonpoint source pollution on Tuojiang River Basin[J]. Scientia Agricultura Sinica,2015,48(18):3654-3665. doi: 10.3864/j.issn.0578-1752.2015.18.009 [26] 自贡市统计局. 自贡市统计年鉴: 2011—2018年[Z]. 自贡: 自贡市统计局, 2011—2018. [27] 杨耿, 秦延文, 马迎群, 等.沱江流域磷石膏的磷形态组成及潜在释放特征[J]. 环境工程技术学报,2018,8(6):610-616. doi: 10.3969/j.issn.1674-991X.2018.06.081YANG G, QIN Y W, MA Y Q, et al. Phosphorus forms and potential release characteristics of phosphogypsum in Tuojiang River Basin[J]. Journal of Environmental Engineering Technology,2018,8(6):610-616. ◇ doi: 10.3969/j.issn.1674-991X.2018.06.081