Comprehensive environmental risk assessment of petrochemical industry in Liaodong Bay coastal waters
-
摘要: 为探究临港石化产业对海洋生态环境造成的不利影响,以2014—2018年辽东湾近岸海域生态环境监测数据为基础,结合环境灾害学理论体系与数理统计法构建了环境风险评价模型。并借助ArcGIS空间矢量叠加分析技术,开展了辽东湾近岸海域环境风险状况评价研究。结果表明:辽东湾近岸海域环境风险承载能力整体较为脆弱,从远海至近岸海域环境脆弱性加重;同时,从近年环境监测数据来看,其生态环境状况有向不利方向发展的趋势;研究海域整体处于中风险态势,高风险区域约占总海域面积的17.6%,主要分布于双台子河口至辽河口海域,分布状况与临港石化产业及其输油线路密切相关。建议管理部门对高风险区域予以密切关注,并建立起与之配套的风险防控、应急快速处置与防灾减灾的综合管理体系。Abstract: In order to evaluate the adverse impacts of port petrochemical industry on the marine eco-environment, theoretical system of environmental disaster and mathematical statistics were used to build an environmental risk assessment model, which was based on the eco-environment monitoring data of Liaodong Bay coastal waters in 2014-2018. The environmental risk assessment of the coastal waters in Liaodong Bay was carried out by using the technology of ArcGIS space vector superposition analysis technology. The results showed that the overall environmental risk carrying capacity of Liaodong Bay coastal waters was vulnerable, with the vulnerability increasing from open sea to the nearshore. At the same time, according to the environmental monitoring data in recent years, the eco-environmental status had a tendency to develop in an unfavorable direction. Meanwhile, the study sea area was in a medium risk situation as a whole, and approximately 17.6% of the coastal waters were at high risk, mainly distributed in the sea area from Shuangtaizi Estuary to Liaohe Estuary, with the distribution closely related to the position of port petrochemical industry and its transportation route. Therefore, it was suggested that the management departments should pay close attention to the high-risk areas, and establish a comprehensive management system for risk prevention and control, rapid emergency disposal and disaster prevention and reduction.
-
表 1 样品分析检测方法
Table 1. Sample analysis and testing methods
介质 项目 单位 分析方法 检出限 回收率/% 检测结果 海水水质 COD mg/L 碱性高锰酸钾法 0.04 92.1~95.3 0.65~2.21 石油类 mg/L 紫外分光光度法 0.01 91.4~93.8 0.02~0.28 铜 μg/L 阳极溶出伏安法 0.20 93.1~94.2 3.12~8.25 铅 μg/L 阳极溶出伏安法 0.30 93.3~94.6 0.74~1.13 汞 μg/L 阳极溶出伏安法 0.01 93.1~94.2 0.04~0.06 镉 μg/L 阳极溶出伏安法 0.20 94.2~95.3 0.56~1.17 海洋沉积物 铜 mg/g 原子吸收分光光度法 12.01) 92.7~93.4 14.00~34.90 铅 mg/g 原子吸收分光光度法 15.01) 92.9~93.5 14.20~45.80 汞 mg/g 冷原子吸收分光光度法 4.01) 92.7~93.4 0.07~0.24 镉 mg/g 原子吸收分光光度法 12.01) 93.1~93.6 0.15~0.62 生物生态 浮游植物多样性 目视法 0.94~3.20 浮游动物多样性 目视法 0.81~2.70 1)单位为μg/kg。 表 2 生态风险评价指标体系
Table 2. Index system of ecological risk assessment
目标层 因素层 指标层 单位 权重 石化产业基地环境风险(R) 承灾体脆弱性(F)
(0.333 3)海水水质 COD mg/L 0.070 2 石油类 mg/L 0.123 2 铜 mg/L 0.046 5 铅 mg/L 0.039 2 汞 mg/L 0.048 4 镉 mg/L 0.039 3 海洋沉积物 铜 mg/g 0.052 5 铅 mg/g 0.038 2 汞 mg/g 0.048 3 镉 mg/g 0.040 2 生物生态 浮游植物 0.046 5 浮游动物 0.057 2 环境敏感目标 海洋保护区与生态红线区 km 0.208 1 旅游休闲娱乐区 km 0.093 1 渔业养殖区 km 0.049 1 致灾体危险性(D)
(0.666 7)风险源 近岸海域溢油事故发生频次 次/a 0.536 4 石化产业区离岸距离 km 0.237 3 输油航路通航频率 次/d 0.226 3 表 3 承灾体脆弱性指标等级划分
Table 3. Classification of vulnerability index of disaster-bearing bodies
介质 指标 轻度脆弱 中度脆弱 高度脆弱 极度脆弱 海水水质 COD ≤ 2.0 ≤ 3.0 ≤ 4.0 ≤ 5.0 石油类 ≤ 0.05 ≤ 0.05 ≤ 0.30 ≤ 0.50 铜 ≤ 0.005 ≤ 0.01 ≤ 0.01 ≤ 0.05 铅 ≤ 0.001 ≤ 0.005 ≤ 0.01 ≤ 0.05 汞 ≤ 0.05 ≤ 0.20 ≤ 0.20 ≤ 0.50 镉 ≤ 0.001 ≤ 0.005 ≤ 0.01 ≤ 0.01 海洋沉积物 铜 ≤ 35 ≤ 100 ≤ 200 > 200 铅 ≤ 60 ≤ 130 ≤ 250 > 250 汞 ≤ 0.20 ≤ 0.50 ≤ 1.00 > 1.00 镉 ≤ 0.50 ≤ 1.50 ≤ 5.00 > 5.00 生物生态 浮游植物多样性 > 3.8 > 2.5 > 1.8 < 1.8 浮游动物多样性 > 4.0 > 2.4 > 1.5 < 1.5 环境敏感
目标保护区及红线区 ≥ 15 ≥ 8 ≥ 4 < 4 旅游休闲娱乐区 ≥ 10 ≥ 5 ≥ 2 < 2 渔业养殖区 ≥ 12 ≥ 6 ≥ 3 < 3 表 4 致灾因子危险性指标等级划分
Table 4. Classification of risk index of hazard-inducing factors
指标 轻度危险 中度危险 高度危险 极度危险 历史环境灾害事故发生频次 ≤ 0.10 ≤ 0.40 ≤ 0.80 > 0.80 石化厂区离岸距离 ≥ 10 ≥ 6 ≥ 3 < 3 输油航路通航频率 ≤ 0.10 ≤ 0.25 ≤ 0.50 > 0.90 表 5 指标赋值与评价指数等级划分
Table 5. Index value and classification of assessment index
脆弱性级别 危险性级别 赋值 承灾体脆弱性指数(F) 致灾体危险性指数(D) 环境风险评价结果(R) 环境风险级别 轻度脆弱 轻度脆弱 40 <50 <50 <50 低风险 中度脆弱 中度脆弱 60 50~60 50~60 50~60 中等风险 高度脆弱 高度脆弱 80 6~70 60~70 60~70 较高风险 极度脆弱 极度脆弱 100 ≥70 ≥70 ≥70 高风险 -
[1] 陈飞. 我国临海工业用地布局与规划策略研究[D]. 大连: 大连理工大学, 2019. [2] WILSON R, CROUCH E. Risk assessment and comparisons: an introduction[J]. Science,1987,236:267-270. doi: 10.1126/science.3563505 [3] DUARTE H O, DROGUETT E L. Quantitative ecological risk assessment of accidental oil spills on ship routes nearby a marine national park in Brazil[J]. Human and Ecological Risk Assessment:An International Journal,2016,22(2):350-368. doi: 10.1080/10807039.2015.1067760 [4] 李旭, 吕佳佩, 裴莹莹, 等.国内突发环境事件特征分析[J]. 环境工程技术学报,2021,11(2):401-408.LI X, LÜ J P, PEI Y Y, et al. Analysis of the characteristics of environmental emergencies in China[J]. Journal of Environmental Engineering Technology,2021,11(2):401-408. [5] 张晓霞. 辽东湾海洋溢油应急响应决策支持技术研究[D]. 大连: 大连海事大学, 2017. [6] 张芩. 海洋工程设计手册: 海上溢油防治分册[M]. 上海: 上海交通大学出版社, 2015. [7] 钱伟, 冯建祥, 宁存鑫, 等.近海污染的生态修复技术研究进展[J]. 中国环境科学,2018,38(5):1855-1866. doi: 10.3969/j.issn.1000-6923.2018.05.031QIAN W, FENG J X, NING C X, et al. Research progress of ecological restoration for coastal pollution[J]. China Environmental Science,2018,38(5):1855-1866. doi: 10.3969/j.issn.1000-6923.2018.05.031 [8] CONTRERAS-TEREZA V K, SALAS-DE-LEÓN D A, MONREAL-JIMÉNEZ R, et al. The 2010 Gulf of Mexico oil spill: a modeling study[J]. Arabian Journal of Geosciences,2021,14(7):1-12. [9] VOŠTA M. Global changes and new trends within the territorial structure of the oil, gas and coal industries[J]. Acta Oeconomica Pragensia,2009,17(1):45-59. doi: 10.18267/j.aop.3 [10] PÉREZ-CADAHÍA B, LAFUENTE A, CABALEIRO T, et al. Initial study on the effects of Prestige oil on human health[J]. Environment International,2007,33(2):176-185. doi: 10.1016/j.envint.2006.09.006 [11] 江少文. 石化企业环境风险综合评价及案例研究[D]. 东营: 中国石油大学(华东), 2018. [12] 谢元博, 李巍, 郝芳华.基于区域环境风险评价的产业布局规划优化研究[J]. 中国环境科学,2013,33(3):560-568. doi: 10.3969/j.issn.1000-6923.2013.03.026XIE Y B, LI W, HAO F H. Optimization of industrial layout planning based on regional environmental risk assessment[J]. China Environmental Science,2013,33(3):560-568. doi: 10.3969/j.issn.1000-6923.2013.03.026 [13] HAMMAR L, MOLANDER S, PÅLSSON J, et al. Cumulative impact assessment for ecosystem-based marine spatial planning[J]. Science of the Total Environment,2020,734:139024. doi: 10.1016/j.scitotenv.2020.139024 [14] ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials,2020,400:123289. doi: 10.1016/j.jhazmat.2020.123289 [15] Barnthouse L W. Environmental risk analysis for direct coal liquefaction[M]. ORNL/TM-9074, 1984. [16] HAYES E H, LANDIS W G. Regional ecological risk assessment of a near shore marine environment: cherry point, WA[J]. Human and Ecological Risk Assessment:an International Journal,2004,10(2):299-325. doi: 10.1080/10807030490438256 [17] MATEJOVA M, BRIGGS C M. Embracing the darkness: methods for tackling uncertainty and complexity in environmental disaster risks[J]. Global Environmental Politics,2021,21(1):76-88. doi: 10.1162/glep_a_00591 [18] MULVIHILL P R. The ambiguity of environmental disasters[J]. Journal of Environmental Studies and Sciences,2021,11(1):1-5. doi: 10.1007/s13412-020-00646-1 [19] LANDIS W G, WIEGERS J K. Ten years of the relative risk model and regional scale ecological risk assessment[J]. Human and Ecological Risk Assessment: an International Journal,2007,13(1):25-38. doi: 10.1080/10807030601107536 [20] 陈思杨, 宋琍琍, 刘希真, 等.浙江典型海湾潮间带沉积物污染及生态风险评价[J]. 中国环境科学,2020,40(4):1771-1781. doi: 10.3969/j.issn.1000-6923.2020.04.045CHEN S Y, SONG L L, LIU X Z, et al. Evaluation on sediment pollution and potential ecological risks in the intertidal zone of typical bays in Zhejiang Province[J]. China Environmental Science,2020,40(4):1771-1781. doi: 10.3969/j.issn.1000-6923.2020.04.045 [21] 武暕, 郭飞.辽宁省入海河流及近岸海域风险评估[J]. 环境工程技术学报,2018,8(1):65-70.WU J, GUO F. Risk assessment of rivers into the sea and seashores in Liaoning Province[J]. Journal of Environmental Engineering Technology,2018,8(1):65-70. [22] WANG P, ZHANG L J, LIN X, et al. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China[J]. Marine Pollution Bulletin,2020,156:111279. doi: 10.1016/j.marpolbul.2020.111279 [23] 朱韻洁,朱晓艳,林英姿,等.辽东湾优先控制污染物的筛选[J]. 环境工程技术学报,2021,11(3):459-467.ZHU Y J, ZHU X Y, LIN Y Z, et al. Screening of priority pollutants in Liaodong Bay[J]. Journal of Environmental Engineering Technology,2021,11(3):459-467. [24] 王江涛. 海洋功能区划若干理论研究[D]. 青岛: 中国海洋大学, 2011. [25] 邵秘华, 陶平, 孟德新. 辽宁省海洋生态功能区划研究[M]. 北京: 海洋出版社, 2012. [26] 李长义, 苗丰民. 辽宁省海洋功能区划[M]. 北京: 海洋出版社, 2006. [27] 陈桂糖, 谭兵, 李珊珊.智慧城市的综合评价体系分析[J]. 现代商贸工业,2017,29(32):8-9. [28] AYATOLLAHI S M T. Age standardization of weight-for-height in children using a unified Z-score method[J]. Annals of Human Biology,1995,22(2):151-162. doi: 10.1080/03014469500003802 [29] 王思宇, 陶平, 宗勇军, 等.辽东湾近岸海域油污染生态风险评价研究[J]. 海洋科学,2017,41(9):143-150. doi: 10.11759/hykx20161121001WANG S Y, TAO P, ZONG Y J, et al. Ecological risk assessment of oil spills in coastal waters of Liaodong Bay[J]. Marine Sciences,2017,41(9):143-150. doi: 10.11759/hykx20161121001 [30] 张晓霞. 辽宁海洋灾害风险分级及评价方法研究[D]. 大连: 大连海事大学, 2013. [31] 孟庆楠.灾害及灾害管理研究评介[J]. 辽宁气象,2002,18(3):42-43. [32] 程嘉熠, 张晓霞, 陶平, 等.大连葫芦山湾潜在生态环境风险评价研究[J]. 环境工程,2016,34(1):117-120.CHENG J Y, ZHANG X X, TAO P, et al. Research on the evaluation of ecological potential risk in Dalian Hulushan Bay[J]. Environmental Engineering,2016,34(1):117-120. [33] LI J L, PU R L, GONG H B, et al. Evolution characteristics of landscape ecological risk patterns in coastal zones in Zhejiang Province, China[J]. Sustainability,2017,9(4):584. doi: 10.3390/su9040584 [34] 张学宏, 李颜, 郝培章, 等.水文资料插值计算方法探讨[J]. 海洋预报,2008,25(1):5-13. doi: 10.3969/j.issn.1003-0239.2008.01.002ZHANG X H, LI Y, HAO P Z, et al. Discussion on the interpolation calculation methods of hydrological data[J]. Marine Forecasts,2008,25(1):5-13. doi: 10.3969/j.issn.1003-0239.2008.01.002 [35] 张晓霞, 程嘉熠, 陶平, 等.近岸海域多环芳烃生态系统动力学模型及生境影响[J]. 中国环境科学,2016,36(5):1540-1546. doi: 10.3969/j.issn.1000-6923.2016.05.038ZHANG X X, CHENG J Y, TAO P, et al. Studying of ecological dynamics models of PAHs and their influence on eco-environment in coastal waters[J]. China Environmental Science,2016,36(5):1540-1546. doi: 10.3969/j.issn.1000-6923.2016.05.038 [36] 张晓霞, 陶平, 程嘉熠, 等.海岛近岸海域资源环境承载能力评价及其应用[J]. 环境科学研究,2016,29(11):1725-1734.ZHANG X X, TAO P, CHENG J Y, et al. Method and application of resource and environment carrying capacity assessment for island offshore sea areas[J]. Research of Environmental Sciences,2016,29(11):1725-1734. [37] KANKARA R S, AROCKIARAJ S, PRABHU K. Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India[J]. Marine Pollution Bulletin,2016,106(1/2):95-103. [38] 曹慧慧. 渤海北部海流特征观测研究及水交换能力评估[D]. 上海: 上海海洋大学, 2018. [39] LOUCKS O L. Looking for surprise in managing stressed ecosystems[J]. BioScience,1985,35(7):428-432. doi: 10.2307/1310023 [40] 杨洁, 毕军, 李其亮, 等.区域环境风险区划理论与方法研究[J]. 环境科学研究,2006,19(4):132-137. doi: 10.3321/j.issn:1001-6929.2006.04.026YANG J, BI J, LI Q L, et al. Study on theory and methodology of regional environmental risk zoning[J]. Research of Environmental Sciences,2006,19(4):132-137. □ doi: 10.3321/j.issn:1001-6929.2006.04.026