Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin
-
摘要: 为明晰克鲁伦河流域地下水饮用水水源中挥发性有机物(volatile organic compounds,VOCs)的污染特征和风险水平,采用吹扫捕集气相色谱质谱联用仪对2020年8月在克鲁伦河流域采集的12个水样(7个地表水、5个地下水)进行分析,并采用美国国家环境保护局(US EPA)推荐的健康风险和生态风险评价模型对VOCs风险进行评价。结果表明:研究区域水体中VOCs污染程度较低,总体呈现地下水略高于地表水的状况;12个采样点均有VOCs检出,其中1,1-二氯乙烷、2,2-二氯丙烷、1,2-二氯丙烷、1,3-二氯丙烷、1,1-二氯乙烯检出率为100%;检出的VOCs中,1,3-二氯丙烷浓度最高,为1 186.44~4 677.97 ng/L,平均值为2 524.01 ng/L,邻二甲苯浓度最低,平均值仅为0.99 ng/L;各采样点无非致癌健康风险,致癌健康风险在可接受范围内,对水生生物有中等强度生态风险。Abstract: In order to clarify the pollution characteristics and risk levels of volatile organic compounds (VOCs) in the groundwater drinking water sources of Klulun River Basin, a purge and trap gas chromatograph-mass spectrometer was used to analyze the pollution in the Klulun River in August 2020. Twelve water samples (7 surface water and 5 groundwater) collected in the basin were tested and analyzed, and the health risk and ecological risk assessment models recommended by US EPA were used to assess the risk of VOCs. The results showed that the degree of VOCs pollution in the water bodies of the study area was low, and the groundwater was generally slightly higher than the surface water. VOCs were detected in 12 sampling points, including 1,1-dichloroethane, 2,2-dichloropropane, 1,2-dichloropropane, 1,3-dichloropropane and1,1-dichloroethylene, and the detection rate of these VOCs were 100%. Among the detected VOCs, the concentration of 1,3-dichloropropane was the highest, with an average value of 2 524.01 ng/L, ranging from 1 186.44 to 4 677.97 ng/L; the concentration of o-xylene was the lowest, with an average value of only 0.99 ng/L. There was no non-carcinogenic health risks at each sampling site, the carcinogenic health risks were within an acceptable range, and there was moderate ecological risks to aquatic organisms.
-
[1] 何华飞, 王浙明, 许明珠, 等. 制药行业VOCs排放特征及控制对策研究:以浙江为例[J]. 中国环境科学, 2012, 32(12):2271-2277.HE H F, WANG Z M, XU M Z, et al. Studies on the emission characteristics and countermeasures of VOCs from pharmaceutical industry:based on Zhejiang Province[J]. China Environmental Science, 2012, 32(12):2271-2277. [2] 代雪萍, 王焱, 谢晓峰, 等. 挥发性有机物治理技术研究现状[J]. 材料工程, 2020, 48(11):1-8.DAI X P, WANG Y, XIE X F, et al. Research status of volatile organic compounds treatment technology[J]. Journal of Materials Engineering, 2020, 48(11):1-8. [3] BENNETT G F. Control of volatile organic compound emissions:conventional and emerging technologies[J]. Journal of Hazardous Materials, 2002, 90(1):109-110.
doi: 10.1016/S0304-3894(01)00343-0[4] LAU G. Chapter 34.health and toxicological aspects of disinfection by-products in drinking water:a UK review[M]//Disinfection by-products in drinking water. Cambridge: Royal Society of Chemistry, 2015:299-311. [5] LOPES T J, BENDER D A. Nonpoint sources of volatile organic compounds in urban areas:relative importance of land surfaces and air[J]. Environmental Pollution, 1998, 101(2):221-230.
doi: 10.1016/S0269-7491(98)00048-7[6] CHEN X C, LUO Q, WANG D H, et al. Simultaneous assessments of occurrence,ecological,human health,and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins,China[J]. Environmental Pollution, 2015, 206:64-72.
doi: 10.1016/j.envpol.2015.06.027[7] 姜媛, 孙晓红, 王艳, 等. 吹扫捕集-气相色谱/质谱法测定松花江流域10个主要城市出厂水中24种挥发性有机物[J]. 中国卫生标准管理, 2014, 5(1):75-76. [8] 饶志, 储小东, 颜春, 等. 鄱阳湖平原浅层地下水有机污染物含量特征与健康风险评价[J]. 地球与环境, 2019, 47(5):662-670.RAO Z, CHU X D, YAN C, et al. Characteristics and health risk assessment of organic pollutants in groundwater of the Poyang Lake Plain[J]. Earth and Environment, 2019, 47(5):662-670. [9] 郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险:以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6):102-113.GUO Y L, QUAN X Q, WU Q. Pollution characteristics and health risk assessment of volatile organic compounds of typical karst groundwater source in North China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(6):102-113. [10] 孙英, 周金龙, 曾妍妍, 等. 环博斯腾湖地区地下水有机污染现状评价[J]. 干旱区资源与环境, 2018, 32(12):183-189.SUN Y, ZHOU J L, ZENG Y Y, et al. Evaluation of organic pollution status of groundwater around the Bosten Lake[J]. Journal of Arid Land Resources and Environment, 2018, 32(12):183-189. [11] 马超, 薛志钢, 李树文, 等. VOCs排放、污染以及控制对策[J]. 环境工程技术学报, 2012, 2(2):103-109.MA C, XUE Z G, LI S W, et al. VOCs emission,pollution and control measures[J]. Journal of Environmental Engineering Technology, 2012, 2(2):103-109. [12] 江梅, 张国宁, 邹兰, 等. 有机溶剂使用行业VOCs排放控制标准体系的构建[J]. 环境工程技术学报, 2011, 1(3):221-225.JIANG M, ZHANG G N, ZOU L, et al. Study on emission control standard system of VOCs from the use of organic solvents in industries[J]. Journal of Environmental Engineering Technology, 2011, 1(3):221-225. [13] AXMON A, RYLANDER L, RIGNELL-HYDBOM A. Reproductive toxicity of seafood contaminants:prospective comparisons of Swedish east and west Coast fishermen’s families[J]. Environmental Health, 2008, 7:20.
doi: 10.1186/1476-069X-7-20[14] MORAKINYO O M, MOKGOBU M I, MUKHOLA M S, et al. Health risk assessment of exposure to ambient concentrations of benzene,toluene and xylene in Pretoria West,South Africa[J]. African Journal of Science,Technology,Innovation and Development, 2017, 9(4):489-496.
doi: 10.1080/20421338.2017.1352123[15] AMJAD H, HASHMI I, REHMAN M S U, et al. Cancer and non-cancer risk assessment of trihalomethanes in urban drinking water supplies of Pakistan[J]. Ecotoxicology and Environmental Safety, 2013, 91:25-31.
doi: 10.1016/j.ecoenv.2013.01.008[16] World Health Organization. Guidelines for drinking-water quality[R].4th ed. Washington DC:World Health Organization, 2011. [17] 卫生部, 中国国家标准化管理委员会.生活饮用水卫生标准:GB 5749—2006[S]. 北京: 中国标准出版社, 2007. [18] 杨文焕, 陈阿辉, 李卫平, 等. 克鲁伦河水质评价及其对呼伦湖水环境影响分析[J]. 环境工程, 2015, 33(10):113-116.YANG W H, CHEN A H, LI W P, et al. Water quality assessment of Kherlen River and impact analysis of the water environment of Hulun Lake[J]. Environmental Engineering, 2015, 33(10):113-116. [19] US EPA. US EPA method 524.2:measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry-revision4.1[S]. Cincinnati,Ohio:National Exposure Research Laboratory Office of Research and Development,US EPA, 1995. [20] MEANS B. Risk-assessment guidance for Superfund.Volume 1.Human health evaluation manual.part a.interim report (final)[R]. Washington DC: Office of Solid Waste and Emergency Response, Environmental Protection Agency, 1989. [21] NRC. Risk assessment in the federal government[M]. Washington DC: National Academies Press, 1983. [22] 昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6):854-862.CHANG S, ZHAO X R, LIU Y, et al. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River pluvial fan[J]. Research of Environmental Sciences, 2016, 29(6):854-862. [23] LEEUWEN C J, VERMEIRE T G. Risk assessment of chemicals:an introduction[M]. Berlin: Springer Science & Business Media, 2007. [24] CAO F M, QIN P, LU S Y, et al. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake,China[J]. Ecotoxicology and Environmental Safety, 2018, 165:645-653.
doi: 10.1016/j.ecoenv.2018.08.108[25] 程云轩, 高秋生, 李捷, 等. 淮河流域南四湖可挥发性有机物污染特征及风险评价[J]. 环境科学, 2021, 42(4):1820-1829.CHENG Y X, GAO Q S, LI J, et al. Characteristics of volatile organic compounds pollution and risk assessment of Nansi Lake in Huaihe River Basin[J]. Environmental Science, 2021, 42(4):1820-1829. [26] 高秋生, 赵永辉, 焦立新, 等. 白洋淀水体挥发性有机物污染特征与风险评价[J]. 环境科学, 2018, 39(5):2048-2055.GAO Q S, ZHAO Y H, JIAO L X, et al. Pollution characteristics and health risk assessment of volatile organic compounds in Baiyangdian Lake[J]. Environmental Science, 2018, 39(5):2048-2055. [27] 范美娟, 季鹏, 程芳菲. 长江(南京段)水源水中有机污染物的GC/MS分析[J]. 广州化工, 2014, 42(4):128-130.FAN M J, JI P, CHENG F F. GC/MS analysis of organic pollutants in Yangtze River in Nanjing[J]. Guangzhou Chemical Industry, 2014, 42(4):128-130. [28] 谢轶. 辽河流域水体中挥发性有机物(VOCs)污染状况调查[J]. 农业与技术, 2014, 34(2):253-254. [29] 李琰, 周志俊, 宁文吉, 等. 上海市闵行区居民供水系统中挥发性有机物分析[J]. 复旦学报(医学版), 2017, 44(5):644-651.LI Y, ZHOU Z J, NING W J, et al. Analysis of volatile organic compounds in water supply system of Minhang District of Shanghai[J]. Fudan University Journal of Medical Sciences, 2017, 44(5):644-651. [30] KOSTOPOULOU M N, GOLFINOPOULOS S K, NIKOLAOU A D, et al. Volatile organic compounds in the surface waters of Northern Greece[J]. Chemosphere, 2000, 40(5):527-532.
doi: 10.1016/S0045-6535(99)00293-3[31] 赵江涛, 周金龙, 高业新, 等. 新疆焉耆盆地平原区地下水有机污染评价及污染成因[J]. 中国环境科学, 2016, 36(1):117-124.ZHAO J T, ZHOU J L, GAO Y X, et al. Assessment of organic pollution and study on pollution cause of groundwater in the plain area of Yanqi Basin,Xinjiang[J]. China Environmental Science, 2016, 36(1):117-124. [32] FAN C, WANG G S, CHEN Y C, et al. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan[J]. Science of the Total Environment, 2009, 407(7):2165-2174.
doi: 10.1016/j.scitotenv.2008.12.015[33] 张映映, 冯流, 刘征涛. 长江口区域水体半挥发性有机污染物健康风险评价[J]. 环境科学研究, 2007, 20(1):18-23.ZHANG Y Y, FENG L, LIU Z T. Health risk assessment on semivolatile organic compounds in water of Yangtze Estuary area[J]. Research of Environmental Sciences, 2007, 20(1):18-23. [34] 万译文, 康天放, 周忠亮, 等. 北京官厅水库水体中挥发性有机物健康风险评价[J]. 环境科学研究, 2009, 22(2):150-154.WAN Y W, KANG T F, ZHOU Z L, et al. Health risk assessment of volatile organic compounds in water of Beijing Guanting Reservoir[J]. Research of Environmental Sciences, 2009, 22(2):150-154.
点击查看大图
计量
- 文章访问数: 645
- HTML全文浏览量: 321
- PDF下载量: 53
- 被引次数: 0