Calculation of water environmental capacity of ammonia-nitrogen and total phosphorus in Laodao River Basin of the Xiang River
-
摘要: 水环境容量的定量计算是实现水环境精细管理的前提,但相关参数在无充分资料的中小流域较难获得,其变化的难以确定给水环境容量求解带来较多不确定性。网格分布式水文模型和一维河网水质模型计算可以求解部分参数,提升水环境容量计算精度。选取长株潭城市群代表性区域——湘江一级支流捞刀河流域为研究对象,通过建立网格分布式水文模型和一维河网水质模型,结合水环境容量计算公式求解流域内不同控制单元水环境容量和剩余环境容量。结果表明:网格分布式水文模型可以较好地模拟流量,为水环境容量求解提供关键水文参数;金井河口和白沙河口所在控制单元的氨氮入河量超过水环境容量,其他控制单元的氨氮入河量在水环境容量范围内;流域上下游控制单元总磷的剩余环境容量接近0,而中游几个控制单元的剩余环境容量为负,有污染物应削减量。该研究可为无充分资料地区环境容量求解提供参考。Abstract: The quantitative calculation of water environmental capacity is a prerequisite for the fine management of water environment. However, the parameters and their changes are hard to ascertain, especially in middle and small-scale catchments with insufficient datasets, which bring uncertainties to the calculation of water environmental capacity. The distributed hydrologic model and the one-dimensional (1-D) river network model can solve some parameters, thus improving the calculation accuracy of water environmental capacity. A representative catchment in the Chang-Zhu-Tan area, the Laodao River catchment, which is one of the first-level tributaries of the Xiang River Basin, was chosen. The distributed hydrologic model and the 1-D river network model were constructed, and then the water environmental capacity and remaining environmental capacity of different control units were solved, combined with the calculation formula of water environment capacity. The results showed that the distributed hydrologic model performed well in simulating streamflow, which provided vital hydrologic parameters necessary for calculating water environmental capacity. Second, the discharges of ammonia nitrogen exceeded water environmental capacity at control units of outlets of Jinjing and Baisha sections, while the other control units had pollutant discharges lower than their water environmental capacity. In the upper and lower reaches of the Laodao River Basin, the remaining environmental capacity of total phosphorus at the control units approximated 0, while in the middle reaches of the river, the remaining environmental capacity of several control units was negative, and some pollutants should be reduced. The study provided a reference method for calculating water environmental capacity in areas with a lack of data.
-
表 1 研究区各控制单元基本信息
Table 1. Basic information of each control unit in the study area
控制单元
编号出口断面名称 面积/
km2平均海拔/
m断面
级别S1 关山水库 29.38 137 市控 S2 狮岩河口 144.24 71 市控 S3 永乐桥河口 132.3 81 市控 S4 东门江河口 68.73 61 市控 S5 金井河口 729.94 62 市控 S6 白沙河口 318.14 57 市控 S7 黄泥江河口 157.53 56 市控 S8 石塘铺 592.94 45 省控 S9 石子 280.21 28 省控 S10 土桥撇洪渠入捞刀河下游 19.67 30 市控 S11 金竹河与楚家湖入捞刀河口 29.92 28 市控 S12 捞刀河口 32.77 28 国控 表 2 研究区氨氮入河量统计
Table 2. Inflow of ammonia nitrogen in the study area
控制单元编号 农业源 畜禽养殖排放 工业源 生活源 合计 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) S1 0.53 100 0 <1 0.53 S2 7.74 100 0 <1 0 0 7.74 S3 18.09 100 0.01 <1 0.05 <1 0 0 18.14 S4 18.61 98 0 <1 0.05 0 0.28 1 18.94 S5 104.17 51 0.24 <1 8.84 4 89.53 44 202.78 S6 114.47 78 0.09 <1 0.36 <1 31.36 21 146.28 S7 16.38 84 0 <1 3.06 16 - 19.45 S8 97.68 39 0.21 <1 126.12 50 26.22 10 250.23 S9 79.38 63 0.05 <1 14.4 11 32.19 26 126.03 S10 3.67 100 0.00 0 0 0 3.67 S11 5.1 75 1.67 25 6.78 S12 8.29 47 0.59 3 8.68 49 17.57 平均值 79.07 52 0.14 <1 33.89 22 39.52 26 152.61 表 3 研究区总磷入河量统计
Table 3. Inflow of total phosphorus in the study area
控制单元编号 农业源 畜禽养殖排放 工业源 生活源 合计 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) 占比/% 入河量/(t/a) S1 1.88 100 0.00 0 1.88 S2 23.94 100 0.00 0 0.00 0 23.95 S3 67.64 100 0.01 <1 0.04 <1 0 0 67.69 S4 127.1 100 0.00 0 0.00 0 0.14 <1 127.24 S5 611.42 97 0.25 <1 3.14 <1 14.42 2 629.22 S6 528.44 99 0.13 <1 0.10 <1 4.94 1 533.61 S7 73.77 99 0.00 0 0.93 1 - 74.7 S8 403.04 96 0.09 <1 10.28 2 6.83 2 420.25 S9 464.72 96 0.04 <1 6.82 1 12.47 3 484.05 S10 15.32 100 0.00 0 0 0 15.32 S11 11.18 90 1.30 10 12.48 S12 28.25 94 0.31 1 1.48 5 30.04 平均值 401.45 97 0.11 <1 4.15 1 7.77 2 413.49 -
[1] YANG X Y, LIU Q, FU G T, et al. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources[J]. Water Research,2016,94:187-199. doi: 10.1016/j.watres.2016.02.040 [2] XU J, JIN G Q, TANG H W, et al. Assessing temporal variations of ammonia nitrogen concentrations and loads in the Huaihe River Basin in relation to policies on pollution source control[J]. Science of the Total Environment,2018,642:1386-1395. doi: 10.1016/j.scitotenv.2018.05.395 [3] 彭嘉玉, 雷坤, 乔飞, 等.基于不同设计水文条件的铁岭水环境容量核算[J]. 环境工程技术学报,2017,7(4):470-476. doi: 10.3969/j.issn.1674-991X.2017.04.064PENG J Y, LEI K, QIAO F, et al. Calculation of water environmental capacity in Tieling based on different design hydrological conditions[J]. Journal of Environmental Engineering Technology,2017,7(4):470-476. doi: 10.3969/j.issn.1674-991X.2017.04.064 [4] 王华, 逄勇, 丁玲.滨江水体水环境容量计算研究[J]. 环境科学学报,2007,27(12):2067-2073. doi: 10.3321/j.issn:0253-2468.2007.12.022WANG H, PANG Y, DING L. Calculation of the water environment capacity for a waterfront body[J]. Acta Scientiae Circumstantiae,2007,27(12):2067-2073. doi: 10.3321/j.issn:0253-2468.2007.12.022 [5] 夏青.水环境容量[J]. 环境保护科学,1981,7(4):21-29. [6] 单保庆, 王超, 李叙勇, 等.基于水质目标管理的河流治理方案制定方法及其案例研究[J]. 环境科学学报,2015,35(8):2314-2323.SHAN B Q, WANG C, LI X Y, et al. Method for river pollution control plan based on water quality target management and the case study[J]. Acta Scientiae Circumstantiae,2015,35(8):2314-2323. [7] 张永良.水环境容量基本概念的发展[J]. 环境科学研究,1992,5(3):59-61. doi: 10.3321/j.issn:1001-6929.1992.03.014ZHANG Y L. The development of basic concept of water environmental capacity[J]. Research of Environmental Sciences,1992,5(3):59-61. doi: 10.3321/j.issn:1001-6929.1992.03.014 [8] 娄保锋, 卓海华, 周正, 等.近18年长江干流水质和污染物通量变化趋势分析[J]. 环境科学研究,2020,21(5):1150-1162. doi: 10.3321/j.issn:1003-5427.2009.04.008LOU B F, ZHUO H H, ZHOU Z, et al. Analysis on alteration of water quality and pollutant fluxes in the Yangtze mainstem during recently 18 years[J]. Research of Environmental Sciences,2020,21(5):1150-1162. doi: 10.3321/j.issn:1003-5427.2009.04.008 [9] 张慧, 席北斗, 高如泰, 等.白洋淀水环境容量核算及上游容量分配[J]. 环境工程技术学报,2012,2(4):313-318.ZHANG H, XI B D, GAO R T, et al. Water environmental capacity accounting and upstream capacity allocation of Baiyangdian Lake[J]. Journal of Environmental Engineering Technolog,2012,2(4):313-318. [10] 董飞, 刘晓波, 彭文启, 等.地表水水环境容量计算方法回顾与展望[J]. 水科学进展,2014,25(3):451-463.DONG F, LIU X B, PENG W Q, et al. Calculation methods of water environmental capacity of surface waters: review and prospect[J]. Advances in Water Science,2014,25(3):451-463. [11] 张秀菊, 王宝斌, 徐小溪, 等. 动态水环境容量研究: 以潇河流域为例[J/OL]. 中国农村水利水电, 2021[2021-02-30]. https://kns.cnki.net/kcms/detail/42.1419.TV.20210722.1347.020.html.ZHANG X J, WANG B B, XU X X, et al. Research on dynamic water environment capacity: taking Xiaohe River Basin as an example[J/OL]. China Rural Water and Hydropower, 2021[2021-02-30]. https://kns.cnki.net/kcms/detail/42.1419.TV.20210722.1347.020.html. [12] 门宝辉, 牛晓赟, 刘灿均, 等. 滦河承德段水环境容量核算及其初始分配[J/OL]. 水资源保护, 2021[2021-02-30]. https://kns.cnki.net/kcms/detail/32.1356.TV.20210223.1520.002.html. [13] 胡开明, 娄明月, 冯彬, 等.江苏省水环境容量计算及总量控制目标可达性研究[J]. 环境与发展,2021,33(1):103-111.HU K M, LOU M Y, FENG B, et al. Calculation of water environmental capacity and accessibility of total amount control target in Jiangsu Province[J]. Environment and Development,2021,33(1):103-111. [14] 谭铭欣, 李天宏, 赵志杰.山西省御河流域水环境污染负荷估算及来源[J]. 南水北调与水利科技,2019,17(5):90-99.TAN M X, LI T H, ZHAO Z J. Pollution load estimation and source analysis in the Yu River Basin, Shanxi Province[J]. South-to-North Water Transfers and Water Science & Technology,2019,17(5):90-99. [15] HUANG G X, FALCONER R, LIN B L. Integrated river and coastal flow, sediment and Escherichia coli modelling for bathing water quality[J]. Water,2015,7(12):4752-4777. doi: 10.3390/w7094752 [16] HUANG G X, ZHOU J J, LIN B L, et al. Modelling flow in the middle and Lower Yangtze River, China[J]. Proceedings of the Institution of Civil Engineers,2017,170(6):298-309. doi: 10.1680/jwama.15.00123 [17] HUANG G X, FALCONER R A, LIN B L. Integrated hydro-bacterial modelling for predicting bathing water quality[J]. Estuarine, Coastal and Shelf Science,2017,188:145-155. doi: 10.1016/j.ecss.2017.01.018 [18] HUANG G X, FALCONER R A, LIN B L. Evaluation of E. coli losses in a tidal river network using a refined 1-D numerical model[J]. Environmental Modelling & Software,2018,108:91-101. [19] 付意成, 魏传江, 臧文斌, 等.浑太河污染物入河控制量研究[J]. 水电能源科学,2010,28(12):21-25. doi: 10.3969/j.issn.1000-7709.2010.12.009FU Y C, WEI C J, ZANG W B, et al. Research on contaminant control quantity of entering into Huntai River[J]. Water Resources and Power,2010,28(12):21-25. doi: 10.3969/j.issn.1000-7709.2010.12.009 [20] 戴同威, 李兆华, 宋雅琦.畜禽养殖污染空间分布特征研究:以十堰市竹溪县为例[J]. 可持续发展,2018,8(2):112-120. doi: 10.12677/SD.2018.82013DAI T W, LI Z H, SONG Y Q. Research on the spatial distribution characteristics of livestock and poultry pollution:a case study of Zhuxi County in Shiyan City[J]. Sustainable Development,2018,8(2):112-120. doi: 10.12677/SD.2018.82013 [21] 田爱军, 李冰, 屈健, 等.江苏省灌河流域污染特征及污染控制对策[J]. 湖泊科学,2012,24(4):535-540. doi: 10.3969/j.issn.1003-5427.2012.04.005TIAN A J, LI B, QU J, et al. Characteristics of pollutant sources and control measures in Guanhe River Basin, Jiangsu Province[J]. Journal of Lake Sciences,2012,24(4):535-540. doi: 10.3969/j.issn.1003-5427.2012.04.005 [22] 逄勇, 陆桂华, 吴泽毅, 等. 水环境容量计算理论及应用[M]. 北京: 科学出版社, 2010. [23] 冯帅, 李叙勇, 邓建才.太湖流域上游河网污染物降解系数研究[J]. 环境科学学报,2016,36(9):3127-3136.FENG S, LI X Y, DENG J C. A study on degradation coefficients of pollutants in the upstream river network of the Lake Taihu Basin[J]. Acta Scientiae Circumstantiae,2016,36(9):3127-3136. [24] 王明海.面源污染对河流水质影响的分析与估算[J]. 人民黄河,1993,15(4):7-9. [25] 王顺天, 雷俊山, 贾海燕, 等.三峡水库2003—2017年水质变化特征及成因分析[J]. 人民长江,2020,51(10):47-53.WANG S T, LEI J S, JIA H Y, et al. Water quality characteristics and causes analysis of Three Gorges Reservoir from 2003 to 2017[J]. Yangtze River,2020,51(10):47-53. [26] 刘宝晨, 柳欣, 蒋春华.牡丹江流域水环境容量计算及特征分析[J]. 环境科学与管理,2007,32(6):60-62. doi: 10.3969/j.issn.1673-1212.2007.06.017LIU B C, LIU X, JIANG C H. Calculation and analyzing about the characters of Mudanjiang River's water environmental capability[J]. Environmental Science and Management,2007,32(6):60-62. doi: 10.3969/j.issn.1673-1212.2007.06.017 [27] 吕睿喆, 王翔宇, 宗梅.安徽省八里河流域水质污染时空变化研究[J]. 能源环境保护,2020,34(5):71-78. doi: 10.3969/j.issn.1006-8759.2020.05.013LÜ R Z, WANG X Y, ZONG M. Temporal and spatial variation of water pollution in Bali River Basin of Anhui Province[J]. Energy Environmental Protection,2020,34(5):71-78. doi: 10.3969/j.issn.1006-8759.2020.05.013 [28] WHITEHEAD P G, WILBY R L, BUTTERFIELD D, et al. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies[J]. Science of the Total Environment,2006,365(1/2/3):260-273. [29] WHITEHEAD P G, JOHNES P J, BUTTERFIELD D. Steady state and dynamic modelling of nitrogen in the River Kennet: impacts of land use change since the 1930s[J]. Science of the Total Environment,2002,282/283:417-434. ◇ doi: 10.1016/S0048-9697(01)00927-5