Emission characteristics of road silt loading at the exit of typical construction sites in autumn in Tongzhou District, Beijing
-
摘要: 为研究不同类型工地以及搅拌站和消纳场出口道路尘负荷变化特征,于2020年秋季对北京市通州区主要施工工地(场站)出口道路及137条常规道路(指未受工地影响的公共道路,包括城市道路和公路)进行道路尘负荷监测。根据AP-42模型计算分析典型工地(场站)出口道路扬尘排放因子和排放量。结果表明:2020年秋季北京市通州区不同类型工地(场站)出口2个方向100 m道路尘负荷均值呈搅拌站>消纳场>拆迁工地>房建工地>水务工地>园林绿化工地>交通工地;常规道路尘负荷均值为0.59 g/m2,各典型工地(场站)出口2个方向100 m道路尘负荷均值是常规道路的1.3~21.1倍;典型工地(场站)出口道路尘负荷随距出口距离变化在不同的工地类型之间差异明显,其出口2个方向各200 m道路的PM10和PM2.5扬尘排放因子高出其背景值的1.26~7.37倍,对应的道路扬尘排放量相当于背景点道路路长增加了0.10~2.55 km,平均值相当于13个典型工地(场站)出口道路各增加了1.16 km;所有监测工地(场站)出口及周边道路尘负荷和道路扬尘PM10、PM2.5排放量空间分布表现为北低南高,其影响因素与工地(场站)类型和密度分布、出口道路类型及车流量等密切相关。Abstract: In order to study the variation characteristics of road silt loading at exits of different types of construction sites, mixing stations and construction waste disposal sites, the road silt loading monitoring on exit roads of main construction sites (stations) and 137 conventional roads (referred to public roads that were not affected by construction sites, including urban roads and highways) were carried out in Tongzhou District, Beijing in autumn 2020. Dusts emission factors and emissions at exit roads of typical construction sites (stations) were calculated and analyzed based on AP-42 model. The results showed that the average silt loading of 100 m roads in two directions at the exits of different types of construction sites (stations) ranked as mixing station > construction waste disposal site > demolition site > housing construction site > water works site > landscaping site > traffic site. The average silt loading at 100 m roads in two directions at the exit of each typical construction site (station) was 1.3-21.1 times that of conventional road (0.59 g/m 2). The silt loading of the exit road of typical construction sites (stations) varied with the distance from the exit. There were obvious differences between different types of construction sites. PM10 and PM2.5 dust emission factors of 200 m roads in two directions of the exit were of 1.26-7.37 times higher than the background values, and the corresponding road dust emission was equivalent to an increase of 0.10-2.55 km of the road length at the background point, with the average value being equivalent to an increase of the corresponding road length by 1.16 km for each of the exit roads of 13 typical construction sites (stations). The spatial distribution of road silt loading and road dust PM10 and PM2.5 emissions at the exit and surrounding areas of all monitoring sites (stations) was lower in the north and higher in the south, and its influencing factors were closely related to the type and density distribution of construction sites (stations), the type of exit roads and vehicle flow.
-
Key words:
- Beijing /
- construction site (station) /
- road silt loading /
- road dust /
- spatial distribution
-
表 1 典型工地(场站)出口2个方向100 m尘负荷特征
Table 1. Silt loading characteristics of 100 m in two directions at the exit of typical construction sites (stations)
g/m2 编号 工地(场站)类型 出口道路 工地(场站)出口2个方向
100 m尘负荷均值1 房建 新华北路 2.63 2 房建 芙蓉西路 0.85 3 交通 北堤路 0.79 4 交通 铺外路 1.43 5 水务 通胡大街 1.75 6 水务 滨惠南二街 0.94 7 园林绿化 铺外路 2.54 8 园林绿化 通惠北路 2.63 9 拆迁 五里店西路 10.76 10 拆迁 张采路 3.50 11 搅拌站 董北路 12.45 12 消纳场 辛房路 11.46 13 消纳场 三小路 4.34 14 通州区常规道路 0.59 表 2 不同类型工地(场站)出口及背景点道路扬尘排放特征
Table 2. Road dust emission characteristics at exits and background points of different types of construction sites (stations)
编号 工地(场站)类型 出口道路PM10
排放量/(kg/d)背景点PM10
排放量/(kg/d)出口道路PM2.5
排放量/(kg/d)背景点PM2.5
排放量/(kg/d)背景点增加的
道路长度/km1 房建 1 550.92 465.02 375.22 112.50 0.93 2 房建 802.03 636.40 194.04 154.80 0.10 3 交通 174.53 63.48 42.22 15.36 0.70 4 交通 8 251.70 4 753.29 1 996.38 1 149.99 0.29 5 水务 9 594.51 2 561.48 2 321.25 619.71 1.10 6 水务 608.10 241.03 147.12 58.31 0.61 7 园林绿化 13 918.31 4 753.29 3 367.33 1 149.99 0.77 8 园林绿化 1 550.92 367.21 375.22 88.84 1.29 9 拆迁 1 879.22 470.65 454.65 113.87 1.20 10 拆迁 18 028.52 2 447.52 4 361.74 592.14 2.55 11 搅拌站 2 146.01 430.38 519.20 104.12 1.59 12 消纳场 5 919.55 975.46 1 432.15 236.00 2.03 13 消纳场 2 446.51 434.69 591.90 105.17 1.85 -
[1] VLASOV D, KOSHELEVA N, KASIMOV N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity[J]. Science of the Total Environment,2021,761:143267. doi: 10.1016/j.scitotenv.2020.143267 [2] FAN M Y, ZHANG Y L, LIN Y C, et al. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China[J]. Atmospheric Environment,2021,246:118112. doi: 10.1016/j.atmosenv.2020.118112 [3] ZHOU W, CHEN C, LEI L, et al. Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015-2019 in China[J]. Environmental Pollution,2021,272:116031. doi: 10.1016/j.envpol.2020.116031 [4] KUL A O. Report on the state of the environment in Moscow in 2018[R]. Moscow: Department of Nature Management and Environmental Protection of Moscow Government, 2019. [5] ALVES C A, EVTYUGINA M, VICENTE A M P, et al. Chemical profiling of PM10 from urban road dust[J]. Science of the Total Environment,2018,634:41-51. doi: 10.1016/j.scitotenv.2018.03.338 [6] MA Y K, GONG M L, ZHAO H T, et al. Contribution of road dust from Low Impact Development (LID) construction sites to atmospheric pollution from heavy metals[J]. Science of the Total Environment,2020,698:134243. doi: 10.1016/j.scitotenv.2019.134243 [7] MIGUEL A G, CASS G R, GLOVSKY M M, et al. Allergens in paved road dust and airborne particles[J]. Environmental Science & Technology,1999,33(23):4159-4168. [8] TIITTANEN P, TIMONEN K L, RUUSKANEN J, et al. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children[J]. The European Respiratory Journal,1999,13(2):266-273. doi: 10.1034/j.1399-3003.1999.13b08.x [9] VENKATRAM A. A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM10 emissions from paved roads[J]. Atmospheric Environment,2000,34(1):1-11. doi: 10.1016/S1352-2310(99)00330-1 [10] VENKATRAM A, FITZ D, BUMILLER K, et al. Using a dispersion model to estimate emission rates of particulate matter from paved roads[J]. Atmospheric Environment,1999,33(7):1093-1102. doi: 10.1016/S1352-2310(98)00316-1 [11] TRUJILLO-GONZÁLEZ J M, TORRES-MORA M A, JIMÉNEZ-BALLESTA R, et al. Land-use-dependent spatial variation and exposure risk of heavy metals in road-deposited sediment in Villavicencio, Colombia[J]. Environmental Geochemistry and Health,2019,41(2):667-679. doi: 10.1007/s10653-018-0160-6 [12] SAHU S K, BEIG G, PARKHI N S. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010[J]. Atmospheric Environment,2011,45(34):6180-6190. doi: 10.1016/j.atmosenv.2011.08.014 [13] BOGACKI M, MAZUR M, OLENIACZ R, et al. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality[J]. E3S Web of Conferences,2018,28:01003. doi: 10.1051/e3sconf/20182801003 [14] SINGH V, BISWAL A, KESARKAR A P, et al. High resolution vehicular PM10 emissions over megacity Delhi: relative contributions of exhaust and non-exhaust sources[J]. Science of the Total Environment,2020,699:134273. doi: 10.1016/j.scitotenv.2019.134273 [15] PACHON J E, VANEGAS S, SAAVEDRA C, et al. Evaluation of factors influencing road dust loadings in a Latin American urban center[J]. Journal of the Air & Waste Management Association,2021,71(2):268-280. [16] PANT P, HARRISON R M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review[J]. Atmospheric Environment,2013,77:78-97. doi: 10.1016/j.atmosenv.2013.04.028 [17] 樊守彬, 张东旭, 田灵娣, 等.北京市交通扬尘PM2.5排放清单及空间分布特征[J]. 环境科学研究,2016,29(1):20-28.FAN S B, ZHANG D X, TIAN L D, et al. Emission inventory and spatial distribution of road fugitive dust PM2.5 in Beijing[J]. Research of Environmental Sciences,2016,29(1):20-28. [18] 樊守彬, 张东旭, 田灵娣.AP-42道路交通扬尘排放模型评估及其在北京市的应用[J]. 环境工程学报,2016,10(5):2501-2506. doi: 10.12030/j.cjee.201412180FAN S B, ZHANG D X, TIAN L D. Assessment for AP-42 model of road dust emissions and its application in Beijing, China[J]. Chinese Journal of Environmental Engineering,2016,10(5):2501-2506. doi: 10.12030/j.cjee.201412180 [19] 樊守彬, 杨涛, 李雪峰, 等.北京城市副中心道路扬尘排放清单与控制情景[J]. 环境科学与技术,2019,42(4):173-179.FAN S B, YANG T, LI X F, et al. Emission inventory and control scenario analysis for road fugitive dust in sub-center of Beijing[J]. Environmental Science & Technology,2019,42(4):173-179. [20] 樊守彬, 田刚, 李钢, 等.北京铺装道路交通扬尘排放规律研究[J]. 环境科学,2007,28(10):2396-2399. doi: 10.3321/j.issn:0250-3301.2007.10.041FAN S B, TIAN G, LI G, et al. Emission characteristics of paved roads fugitive dust in Beijing[J]. Environmental Science,2007,28(10):2396-2399. doi: 10.3321/j.issn:0250-3301.2007.10.041 [21] 王凯, 樊守彬, 孙改红, 等.北京市延庆区道路扬尘排放特征及影响因素[J]. 环境工程技术学报,2019,9(1):1-7. doi: 10.3969/j.issn.1674-991X.2019.01.001WANG K, FAN S B, SUN G H, et al. Emission characteristics and impact factors of road fugitive dust in Yanqing District, Beijing City[J]. Journal of Environmental Engineering Technology,2019,9(1):1-7. doi: 10.3969/j.issn.1674-991X.2019.01.001 [22] 王凯, 樊守彬, 孙改红, 等.基于行驶里程的北京市延庆区机动车排放清单建立及特征分析[J]. 环境工程技术学报,2019,9(2):119-125. doi: 10.12153/j.issn.1674-991X.2018.09.140WANG K, FAN S B, SUN G H, et al. Motor vehicles emission inventory at county level based on vehicle kilometers travel: a case study of Yanqing District of Beijing[J]. Journal of Environmental Engineering Technology,2019,9(2):119-125. doi: 10.12153/j.issn.1674-991X.2018.09.140 [23] 亓浩雲, 樊守彬, 王凯.北京市不同功能区冬季道路扬尘排放特征[J]. 环境工程技术学报,2020,10(3):323-329. doi: 10.12153/j.issn.1674-991X.20190171QI H Y, FAN S B, WANG K. Characteristics of dust emissions from roads in different functional areas of Beijing[J]. Journal of Environmental Engineering Technology,2020,10(3):323-329. doi: 10.12153/j.issn.1674-991X.20190171 [24] 彭康, 杨杨, 郑君瑜, 等.珠江三角洲地区铺装道路扬尘排放因子与排放清单研究[J]. 环境科学学报,2013,33(10):2657-2663.PENG K, YANG Y, ZHENG J Y, et al. Emission factor and inventory of paved road fugitive dust sources in the Pearl River Delta region[J]. Acta Scientiae Circumstantiae,2013,33(10):2657-2663. [25] 何月欣. 基于AP-42方法的东北三省道路扬尘排放清单研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018. [26] 杨乃旺, 宋文斌, 闫东杰, 等.基于积尘负荷的西安市铺装道路扬尘排放研究[J]. 环境科学学报,2021,41(4):1259-1266.YANG N W, SONG W B, YAN D J, et al. Emission characteristics of pavement road dust in Xi'an based on dust load method[J]. Acta Scientiae Circumstantiae,2021,41(4):1259-1266. [27] 田刚, 樊守彬, 李钢, 等.施工工地出口附近道路交通扬尘排放特征研究[J]. 环境科学,2007,28(11):2626-2629. doi: 10.3321/j.issn:0250-3301.2007.11.038TIAN G, FAN S B, LI G, et al. Characteristics of fugitive dust emission from paved road near construction activities[J]. Environmental Science,2007,28(11):2626-2629. doi: 10.3321/j.issn:0250-3301.2007.11.038 [28] 黄玉虎, 韩凯丽, 陈丽媛, 等.北京市混凝土搅拌站扬尘排放因子及排放清单[J]. 中国环境科学,2017,37(10):3699-3707. doi: 10.3969/j.issn.1000-6923.2017.10.011HUANG Y H, HAN K L, CHEN L Y, et al. Emission factor and inventory for fugitive dust from concrete batching plants in Beijing[J]. China Environmental Science,2017,37(10):3699-3707. doi: 10.3969/j.issn.1000-6923.2017.10.011 [29] 北京市环保局. 新一轮北京PM2.5来源解析发布: 燃煤不再是大气污染主要来源[N]. 人民日报, 2018-05-15(2). [30] YANG X W, CHENG S Y, LANG J L, et al. Characterization of aircraft emissions and air quality impacts of an international airport[J]. Journal of Environmental Sciences,2018,72:198-207. doi: 10.1016/j.jes.2018.01.007 [31] US Environmental Protection Agency. Emission factor documentation for AP-42, Section 13.2.1[R]. US Measurement Policy Group Office of Air Quality Planning and Standards, 2011: 4-16. [32] 杨德容, 叶芝祥, 杨怀金, 等.成都市铺装道路扬尘排放清单及空间分布特征研究[J]. 环境工程,2015,33(11):83-87.YANG D R, YE Z X, YANG H J, et al. Emission inventory and spatial distribution of paved road fugitive dust in Chengdu in Sichuan Province[J]. Environmental Engineering,2015,33(11):83-87. [33] 梁珊, 伏晴艳, 刘启贞, 等.上海市秋季典型建筑工地结构施工阶段扬尘污染特征[J]. 环境污染与防治,2018,40(12):1394-1399.LIANG S, FU Q Y, LIU Q Z, et al. The pollution characterizations of fugitive dust of a typical construction site during the structure construction period in autumn in Shanghai[J]. Environmental Pollution & Control,2018,40(12):1394-1399. [34] YAN H, DING G L, FENG K L, et al. Systematic evaluation framework and empirical study of the impacts of building construction dust on the surrounding environment[J]. Journal of Cleaner Production,2020,275:122767. doi: 10.1016/j.jclepro.2020.122767 [35] 黄天健. 建筑工程施工阶段扬尘监测及健康损害评价[D]. 北京: 清华大学, 2013. [36] CHERIYAN D, HYUN K Y, JAEGOO H, et al. Assessing the distributional characteristics of PM10, PM2.5, and PM1 exposure profile produced and propagated from a construction activity[J]. Journal of Cleaner Production,2020,276:124335. □ doi: 10.1016/j.jclepro.2020.124335