An empirical study of ozone generation by ultraviolet photolysis and high-voltage static electricity in cooking oil fume purification technology
-
摘要: 餐饮行业的发展持续保持平稳的增长态势,同时商居矛盾、异味投诉等一系列餐饮油烟污染问题日益凸显。目前餐饮企业在治理餐饮油烟方面可选用的净化设施类型较多,紫外光解与高压静电的复合式产品在油烟净化市场上占据主导地位,然而紫外光解和高压静电在净化油烟污染的同时可能会产生臭氧的二次污染。在某实际应用场景下,对紫外光解和高压静电不同运行组合情况下的臭氧浓度进行实测分析。结果表明:紫外光解与高压静电单独使用时均会产生臭氧;相同标准设计风量下,紫外光解产生的臭氧浓度比高压静电高96%以上;相同参数的紫外线灯使用数量越多,产生的臭氧浓度越高;臭氧浓度与烹饪工况有一定相关性。Abstract: The development of the catering industry continues to maintain a steady growth trend, while a series of oil fume pollution problems such as the contradiction between business and residents, odor complaints are increasingly prominent. At present, there are various types of purification facilities available for catering enterprises in the treatment of cooking oil fumes. The composite products of ultraviolet (UV) photolytic and high-voltage static electricity occupy a dominant position in oil fume purification market. However, UV photolytic and high-voltage static electricity may produce secondary pollution of ozone while purifying oil fumes. In this study, the ozone concentration under different operating combinations of UV photolysis and high-voltage static electricity was measured and analyzed in a certain practical application scenario. The results showed that both UV photolysis and high-voltage static electricity would produce ozone when used alone; under the same standard design of air volume, the ozone concentration produced by UV photolysis was 96% higher than that of high-voltage static electricity. The more the UV lamps with the same parameters used, the higher the ozone concentration produced. The ozone concentration had a certain correlation with cooking conditions.
-
Key words:
- cooking oil fumes /
- ultraviolet photolysis /
- high-voltage electrostatic /
- ozone
-
表 1 紫外线灯参数
Table 1. Parameters of ultraviolet lamps
管径/mm 安装长度/mm 弧长/mm 功率/W 电流/mA 电压/V 15 1 554 1 474 75 425 179 表 2 高压静电参数
Table 2. High-voltage electrostatic parameters
过滤风速/(m/s) 荷电器直流工作电压/kV 收集器直流工作电压/kV 极板间距/mm 收集器长度/mm 气体流动阻力损失/Pa 3.5 12 6 5.9 366 ≤210 表 3 测试方案
Table 3. Test scenarios
组别 工况 紫外线灯 高压静电 A、A1 备餐 开启 开启 B、B1 备餐 关闭 开启 C、C1 备餐 开启 关闭 D、D1 停止 关闭 关闭 -
[1] 国家统计局. 2019年国民经济和社会发展统计公报[A/OL]. (2020-02-28)[2021-01-31]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html. [2] 林子吟, 林立, 戴郡.上海市餐饮油烟污染控制及管理机制研究[J]. 环境保护科学,2020,46(6):133-137.LIN Z Y, LIN L, DAI J. Research on pollution control and management mechanism of cooking oil fumes in Shanghai[J]. Environmental Protection Science,2020,46(6):133-137. [3] 黄丹雯.烹饪油烟影响PM2.5[J]. 环境,2013(11):69-71. [4] 张星, 钱振清, 张德峰, 等.餐饮油烟排放特征与净化技术研究进展[J]. 环境工程,2020,38(1):37-41.ZHANG X, QIAN Z Q, ZHANG D F, et al. Research progress of cooking fume emission characteristics and purification technologies[J]. Environmental Engineering,2020,38(1):37-41. [5] 林立, 何校初, 邬坚平, 等. 上海餐饮油烟污染特征研究[J]. 环境科学与技术, 2014, 37(增刊2): 546-549.LIN L, HE X C, WU J P, et al. Research of Shanghai cooking fume pollution[J]. Environmental Science & Technology, 2014, 37(Suppl 2): 546-549. [6] CHUNG T Y, EISERICH J P, SHIBAMOTO T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 ℃[J]. Journal of Agricultural and Food Chemistry,1993,41(9):1467-1470. doi: 10.1021/jf00033a022 [7] DU B W, GAO J, CAO C S. Objective recognition of cough as a non-invasive biomarker for exposure to cooking oil fumes[J]. Procedia Engineering,2017,205:3497-3502. doi: 10.1016/j.proeng.2017.09.908 [8] CHEN H C, WU C F, CHONG I W, et al. Exposure to cooking oil fumes and chronic bronchitis in nonsmoking women aged 40 years and over: a health-care based study[J]. BMC Public Health,2018,18(1):1-11. doi: 10.1186/s12889-017-4524-0 [9] HE L Y, HU M, HUANG X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment,2004,38(38):6557-6564. doi: 10.1016/j.atmosenv.2004.08.034 [10] 温梦婷, 胡敏.北京餐饮源排放细粒子理化特征及其对有机颗粒物的贡献[J]. 环境科学,2007,28(11):2620-2625. doi: 10.3321/j.issn:0250-3301.2007.11.037WEN M T, HU M. Physical and chemical characteristics of fine particles emitted from cooking emissions and its contribution to particulate organic matter in Beijing[J]. Environmental Science,2007,28(11):2620-2625. doi: 10.3321/j.issn:0250-3301.2007.11.037 [11] HAN D M, WANG Z, CHENG J P, et al. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation[J]. Environmental Science and Pollution Research,2017,24(22):18619-18629. doi: 10.1007/s11356-017-9433-3 [12] 马景赟, 莫杏梅, 王则武, 等.餐饮业油烟净化行业发展现状[J]. 中国环保产业,2020(9):25-28. doi: 10.3969/j.issn.1006-5377.2020.09.005MA J Y, MO X M, WANG Z W, et al. Current situation of cooking fume purification industry for the catering industry[J]. China Environmental Protection Industry,2020(9):25-28. doi: 10.3969/j.issn.1006-5377.2020.09.005 [13] 孙鹏飞. 紫外/臭氧耦合净化典型VOCs工艺特性及其机理研究[D]. 杭州: 浙江工业大学, 2013. [14] 张雪媛, 蔡毅, 李慎新.餐饮油烟治理现状分析及对策探讨[J]. 广东化工,2018,45(5):137-138. doi: 10.3969/j.issn.1007-1865.2018.05.063ZHANG X Y, CAI Y, LI S X. Analysis and countermeasures of catering lampblack treatment status[J]. Guangdong Chemical Industry,2018,45(5):137-138. doi: 10.3969/j.issn.1007-1865.2018.05.063 [15] 张欢欢, 杨海健, 王深冬, 等.餐饮油烟污染物净化技术研究进展[J]. 现代化工,2020,40(11):71-75.ZHANG H H, YANG H J, WANG S D, et al. Research progress on purification technology for catering oil fume pollutants[J]. Modern Chemical Industry,2020,40(11):71-75. [16] 姜远征. 静电型空气净化器性能及臭氧发生量研究[D]. 济南: 山东建筑大学, 2020. [17] 米俊锋, 裴登明, 杜胜男, 等.复合式油烟净化器除油烟、除味实验[J]. 化工进展,2015,34(12):4403-4406.MI J F, PEI D M, DU S N, et al. Experiments on removing fume and smell of cooking fume composite purifier[J]. Chemical Industry and Engineering Progress,2015,34(12):4403-4406. [18] 丹阳, 李里特.高压静电场(HVEF)臭氧产生能力以及所产生臭氧对毛霉菌的抑制作用[J]. 食品工业科技,2004,25(1):49-51. doi: 10.3969/j.issn.1002-0306.2004.01.016 [19] 生态环境部. 2019中国生态环境状况公报[A/OL]. (2020-06-02)[2021-01-31]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/. [20] 李欢欢.警惕蓝天下的污染[J]. 世界环境,2020(5):14-15.LI H H. Be alert to pollution under blue skies[J]. World Environment,2020(5):14-15. [21] 钟寰平. 精准施策, 打好夏季臭氧污染防治攻坚战[N]. 中国环境报, 2020-08-05(1). [22] 李禾.蓝天保卫战升级 臭氧将成“十四五”治理重点[J]. 世界环境,2020(5):30-31.LI H. To upgrade the Blue Sky Protection Campaign, the 14th Five-Year Plan will focus on the treatment of ozone[J]. World Environment,2020(5):30-31. [23] 王海龙. 基于紫外光解技术的烹饪油烟净化研究[D]. 衡阳: 南华大学, 2017. [24] 李帮俊, 范泽云, 张溢, 等.高压静电催化耦合净化空气中的臭氧控制及其室内浓度预测模型[J]. 环境工程学报,2017,11(7):4117-4124. doi: 10.12030/j.cjee.201605154LI B J, FAN Z Y, ZHANG Y, et al. Ozone control and concentration prediction model in high voltage electrostatic coupling catalysis for indoor air purification[J]. Chinese Journal of Environmental Engineering,2017,11(7):4117-4124. doi: 10.12030/j.cjee.201605154 [25] 生态环境部. 环境空气 臭氧的测定 紫外光度法: HJ 590—2010[S]. 北京: 中国环境科学出版社, 2010. [26] 上海市生态环境局. 餐饮业油烟污染控制技术规范(试行)[A/OL]. (2018-10-24)[2021-01-31]. https://sthj.sh.gov.cn/hbzhywpt1272/hbzhywpt1158/20181024/0024-114063.html.