留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杭锦土负载硫化零价铁的研制及除磷性能

练依宁 吴红斌 蔡金水 龚斌 康得军 简志强 龚亚萍 吕茳芏

练依宁,吴红斌,蔡金水,等.杭锦土负载硫化零价铁的研制及除磷性能[J].环境工程技术学报,2022,12(1):127-136 doi: 10.12153/j.issn.1674-991X.20210137
引用本文: 练依宁,吴红斌,蔡金水,等.杭锦土负载硫化零价铁的研制及除磷性能[J].环境工程技术学报,2022,12(1):127-136 doi: 10.12153/j.issn.1674-991X.20210137
LIAN Y N,WU H B,CAI J S,et al.Preparation of Hangjin clay-supported sulfidated zero-valent iron and its performance on phosphate removal[J].Journal of Environmental Engineering Technology,2022,12(1):127-136 doi: 10.12153/j.issn.1674-991X.20210137
Citation: LIAN Y N,WU H B,CAI J S,et al.Preparation of Hangjin clay-supported sulfidated zero-valent iron and its performance on phosphate removal[J].Journal of Environmental Engineering Technology,2022,12(1):127-136 doi: 10.12153/j.issn.1674-991X.20210137

杭锦土负载硫化零价铁的研制及除磷性能

doi: 10.12153/j.issn.1674-991X.20210137
基金项目: 国家重点研发计划项目(2019YFC1903901,2020YFC1807703);中央级公益性科研院所基本科研业务专项(2019YSKY-010)
详细信息
    作者简介:

    练依宁(2000—),女,研究方向为水文与水资源工程,1812371639@qq.com

    通讯作者:

    龚斌(1977—),男,研究员,博士,主要从事环境净化材料研发及应用、地下水水文及水资源研究, 64260332@qq.com

    康得军(1981—),男,副教授,博士,主要研究方向为城市污水处理过程中重金属离子的迁移转化规律, djkang@fzu.edu.cn

  • 中图分类号: X52

Preparation of Hangjin clay-supported sulfidated zero-valent iron and its performance on phosphate removal

  • 摘要: 以具有较大比表面积和良好吸附性能的天然杭锦土为载体制备杭锦土负载硫化零价铁(HJ@S-nZVI)。优化铁负载比、硫铁摩尔比(S/Fe)以及陈化时间等制备条件,利用扫描电子显微镜(SEM)、能量色散光谱(energy dispersive spectroscopy,EDS)、X射线光电子能谱(XPS)及比表面积(specific surface area,SSA)等手段对HJ@S-nZVI进行综合表征分析。考察投加量、初始pH以及共存离子等因素对HJ@S-nZVI去除磷酸盐效果的影响,并结合吸附等温线和吸附动力学研究其吸附性能和吸附机理。结果表明:HJ@S-nZVI的优化制备条件为铁负载比为0.25,S/Fe为0.01,陈化时间为10 d;SEM、EDS和元素分布图分析表明,硫化零价铁以球状颗粒形式成功负载于杭锦土表面,XPS表明HJ@S-nZVI表面铁的主要存在形态为FeS和FeOOH等;投加量、初始pH和SiO3 2−共存对HJ@S-nZVI去除磷酸盐的效果影响较大,而SO4 2−、CO3 2−和Cl共存对磷酸盐的去除效果无明显竞争影响;HJ@S-nZVI对磷酸盐的吸附过程符合Freundlich等温模型(R2=0.992),不同初始浓度下,准二级动力学模型可较好地描述磷酸盐的去除过程(R2>0.995)。

     

  • 图  1  铁负载比对HJ@S-nZVI去除磷酸盐效果的影响

    Figure  1.  Effect of iron loading ratios on the removal of phosphate by HJ@S-nZVI

    图  2  S/Fe对HJ@S-nZVI去除磷酸盐效果的影响

    Figure  2.  Effect of S/Fe on the removal of phosphate by HJ@S-nZVI

    图  3  陈化时间对HJ@S-nZVI去除磷酸盐效果的影响

    Figure  3.  Effect of aging time on the removal of phosphate by HJ@S-nZVI

    图  4  改性前后HJ的SEM图、HJ@S-nZVI(S/Fe=0.01)的EDS图和S、Fe元素Mapping图

    Figure  4.  SEM of Hangjin clay before and after modification, EDS of HJ@S-nZVI(S/Fe=0.01) and Mapping map of S and Fe

    图  5  X射线光电子能谱(XPS)图

    Figure  5.  X-ray photoelectron spectroscopy (XPS) spectra

    图  6  HJ@S-nZVI投加量对去除磷酸盐效果的影响

    Figure  6.  Effect of HJ@S-nZVI dosage on the removal of phosphate of

    图  7  初始pH对去除磷酸盐效果的影响

    Figure  7.  Effect of initial pH on the removal of phosphate of HJ@S-nZVI

    图  8  共存离子对去除磷酸盐效果的影响

    Figure  8.  Effect of co-existing ions on the removal of phosphate

    图  9  HJ@S-nZVI去除磷酸盐的等温吸附拟合结果

    Figure  9.  Langmuir and Freundlich adsorption isotherms for phosphate adsorbed by HJ@S-nZVI

    图  10  HJ@S-nZVI去除磷酸盐的吸附动力学模型曲线

    Figure  10.  Kinetic model curve of adsorption of phosphate by HJ@S-nZVI

    图  11  HJ@S-nZVI去除磷酸盐的颗粒内部扩散模型曲线

    Figure  11.  Curves for the interparticle diffusion models of phosphate adsorbed by HJ@S-nZVI

    表  1  HJ矿物组成与阳离子交换量[17]

    Table  1.   Mineral composition and cation exchange capacity of Hangjin clay


    CEC/
    (cmol/kg)
    矿物占比/% 烧失
    量/%
    SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2
    32.2 50.9 15.2 6.4 5.9 3.6 3.6 0.9 0.6 12.9
    下载: 导出CSV

    表  2  HJ及改性材料SSA、微孔体积及平均孔径

    Table  2.   Specific surface area, pore volume and average pore diameter of Hangjin clay and modified materials

    样品 SSA/(m2/g) 微孔体积/(cm3/g) 平均孔径/nm
    HJ 66.59 0.1153 6.92
    HJ@nZVI 42.07 0.0899 8.55
    HJ@S-nZVI 47.34 0.0929 7.85
    下载: 导出CSV

    表  3  HJ@S-nZVI去除磷酸盐的等温吸附模型拟合参数

    Table  3.   Isotherm parameters for phosphate adsorption by HJ@S-nZVI

    Langmuir等温吸附模型 Freundlich等温吸附模型
    qm/(mg/g) KL/(L/mg) R2 KF n R2
    32.86 2.168 0.9903 22.45 4.926 0.9920
    下载: 导出CSV

    表  4  HJ@S-nZVI去除磷酸盐的吸附动力学参数

    Table  4.   Kinetic parameters of phosphate adsorption by HJ@S-nZVI

    磷酸盐浓度/
    (mg/L)
    qe,exp/(mg/g) 准一级动力学模型 准二级动力学模型
    k1/min−1 qe,cal/(mg/g) R2 k2/min−1 qe,cal/(mg/g) R2
    5 9.82 0.055 9.44 0.939 0.012 0 9.89 0.999
    10 19.07 0.052 17.78 0.937 0.003 7 19.27 0.999
    15 25.25 0.035 22.93 0.909 0.001 6 25.61 0.999
    20 29.15 0.012 28.15 0.949 0.000 7 30.08 0.998
    25 29.81 0.009 28.54 0.889 0.000 6 30.68 0.995
      注:qe,exp为试验得到的吸附平衡时的吸附容量;qe,cal为模型计算得到的吸附平衡时的吸附容量。
    下载: 导出CSV

    表  5  HJ@S-nZVI去除磷酸盐的Weber-Morris颗粒内扩散模型参数

    Table  5.   Parameters of the Weber-Morris diffusion model for phosphate removal by HJ@S-nZVI

    磷酸盐
    浓度/
    (mg/L)
    第一阶段 第二阶段 第三阶段
    kid1/〔mg/(g·min−0.5)〕 R2 kid2/〔mg/(g·min−0.5)〕 R2 kid3/〔mg/(g·min−0.5)〕 R2
    5 1.39 0.971 0.45 0.935 0.003 8 0.723
    10 2.53 0.962 0.74 0.958 0.060 0.840
    15 2.89 0.999 0.92 0.969 0.18 0.804
    20 2.03 0.965 1.41 0.971 0.30 0.823
    25 2.40 0.949 1.16 0.940 0.39 0.870
    下载: 导出CSV
  • [1] VENKITESHWARAN K, MCNAMARA P J, MAYER B K. Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery[J]. Science of the Total Environment,2018,644:661-674. doi: 10.1016/j.scitotenv.2018.06.369
    [2] CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal,2019,360:342-348. doi: 10.1016/j.cej.2018.11.234
    [3] REN J, LI N, WEI H, et al. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant[J]. Water Research,2020,170:115361. doi: 10.1016/j.watres.2019.115361
    [4] 简志强, 周高婷, 龚斌, 等.微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027

    JIAN Z Q, ZHOU G T, GONG B, et al. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027
    [5] PENG X, XI B D, ZHAO Y, et al. Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment[J]. Environmental Science & Technology,2017,51(17):10100-10108.
    [6] WANG H Y, ZOU Z C, XIAO X L, et al. Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI)[J]. Water Science and Technology,2016,73(11):2689-2696. doi: 10.2166/wst.2016.106
    [7] ZHANG Q, LIU H B, CHEN T H, et al. The synthesis of NZVI and its application to the removal of phosphate from aqueous solutions[J]. Water, Air, & Soil Pollution,2017,228(9):1-10.
    [8] MAHMOUD A S, MOSTAFA M K, NASR M. Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron[J]. Separation Science and Technology,2019,54(1):13-26. doi: 10.1080/01496395.2018.1504799
    [9] SONG S K, SU Y M, ADELEYE A S, et al. Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal[J]. Applied Catalysis B:Environmental,2017,201:211-220. doi: 10.1016/j.apcatb.2016.07.055
    [10] BIN Q, LIN B, ZHU K, et al. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite[J]. Journal of Environmental Sciences,2020,88:90-102. doi: 10.1016/j.jes.2019.08.011
    [11] LI Y J, ZHAO X G, YAN Y, et al. Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): performance, mechanisms, and the role of sulfur species[J]. Chemical Engineering Journal,2019,376:121302. doi: 10.1016/j.cej.2019.03.178
    [12] RAYAROTH M P, PRASANTHKUMAR K P, KANG Y G, et al. Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron: citric acid system[J]. Chemical Engineering Journal,2020,382:122828. doi: 10.1016/j.cej.2019.122828
    [13] WANG Y H, SHAO Q Q, HUANG S S, et al. High performance and simultaneous sequestration of Cr(Ⅵ) and Sb(Ⅲ) by sulfidated zerovalent iron[J]. Journal of Cleaner Production,2018,191:436-444. doi: 10.1016/j.jclepro.2018.04.217
    [14] MA F F, ZHAO B W, DIAO J R, et al. Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron[J]. RSC Advances,2020,10(64):39217-39225. doi: 10.1039/D0RA07391A
    [15] 蔡金水, 康得军, 杨天学, 等.铁改性杭锦土吸附剂对水中砷的去除研究[J]. 环境科学研究,2021,34(2):346-355.

    CAI J S, KANG D J, YANG T X, et al. Removal of arsenic from water by iron modified Hangjin clay adsorbent[J]. Research of Environmental Sciences,2021,34(2):346-355.
    [16] LI X G, ZHAO Y, XI B D, et al. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: effect of clay support and efficiency optimization[J]. Applied Surface Science,2016,370:260-269. doi: 10.1016/j.apsusc.2016.01.141
    [17] 李晓光. 杭锦土负载纳米零价铁的研制及其去除典型污染物效能与机理研究[R]. 北京: 北京师范大学, 2016.
    [18] 李春侠. 负载型硫化纳米零价铁去除水中As(Ⅲ)和Cu(Ⅱ)的研究[D]. 武汉: 武汉科技大学, 2019.
    [19] NAGOYA S, NAKAMICHI S, KAWASE Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: a novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology,2019,218:120-129. doi: 10.1016/j.seppur.2019.02.042
    [20] LI X G, ZHAO Y, XI B D, et al. Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism[J]. Journal of Environmental Sciences,2017,52:8-17. doi: 10.1016/j.jes.2016.03.022
    [21] KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces,2011,3(5):1457-1462.
    [22] TURCIO-ORTEGA D, FAN D M, TRATNYEK P G, et al. Reactivity of Fe/FeS nanoparticles: electrolyte composition effects on corrosion electrochemistry[J]. Environmental Science & Technology,2012,46(22):12484-12492.
    [23] XU B D, LI D C, QIAN T T, et al. Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment[J]. Chemical Engineering Journal,2020,387:124063. doi: 10.1016/j.cej.2020.124063
    [24] 刘文芳, 赵颖, 蔡亚君, 等.杭锦土负载纳米零价铁对水中甲基橙的脱色研究[J]. 工业水处理,2015,35(12):34-39. doi: 10.11894/1005-829x.2015.35(12).034

    LIU W F, ZHAO Y, CAI Y J, et al. Study on the decolorization of methyl orange in aqueous solution using Hangjin clay-supported nanoscale zero-valent iron[J]. Industrial Water Treatment,2015,35(12):34-39. doi: 10.11894/1005-829x.2015.35(12).034
    [25] 王亚浩, 邵欠欠, 张练, 等.膨润土负载硫化纳米零价铁去除对硝基苯酚的研究[J]. 环境污染与防治,2019,41(3):329-333.

    WANG Y H, SHAO Q Q, ZHANG L, et al. The removal of p-nitrophenol by sulfidated nano-zero valent iron supported by bentonite[J]. Environmental Pollution & Control,2019,41(3):329-333.
    [26] PANG Z H, YAN M Y, JIA X S, et al. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: preparation, characterization and influence factors[J]. Journal of Environmental Sciences,2014,26(2):483-491. doi: 10.1016/S1001-0742(13)60419-2
    [27] LIU W, AI Z H, CAO M H, et al. Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires[J]. Applied Catalysis B:Environmental,2014,150/151:1-11. doi: 10.1016/j.apcatb.2013.11.034
    [28] DONG J, ZHAO Y S, ZHAO R, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. Journal of Environmental Sciences,2010,22(11):1741-1747. doi: 10.1016/S1001-0742(09)60314-4
    [29] BOPARAI H K, JOSEPH M, O’CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials,2011,186(1):458-465. ◇ doi: 10.1016/j.jhazmat.2010.11.029
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  197
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19

目录

    /

    返回文章
    返回