Study of bacterial community structure characteristics in humus soils of different landfill ages
-
摘要: 为探究填埋龄对垃圾腐殖土内细菌群落结构的影响,以我国江苏省某生活垃圾填埋场中腐殖土为研究对象,采用Illumina Miseq高通量测序技术分析了填埋年限分别为1~3、3~6、6~10 a的腐殖土及填埋场周边土壤中的细菌群落组成。结果表明:腐殖土中细菌群落的丰富度和多样性随填埋年限呈增加趋势,但均低于填埋场周边土壤。非度量多维尺度(NMDS)分析结果表明,不同填埋年限的腐殖土中细菌群落结构差异性较大,但填埋场周边土壤中细菌群落与填埋年限为6~10 a的腐殖土相似度较高,可能是周边土壤在一定程度上受到了垃圾渗滤液的污染。厚壁菌门、变形菌门、放线菌门、绿弯菌门和拟杆菌门均为各阶段腐殖土中的优势菌门,厚壁菌门的相对丰度随填埋年限增加先增加后减少,绿弯菌门则先减少后增加,拟杆菌门的相对丰度在填埋后期出现下降,而变形菌门和放线菌门在整个过程中无明显变化。冗余分析(RDA)结果表明,腐殖土中细菌群落结构的变化与总氮(TN)、重金属(Cd、Zn)及pH密切相关。Abstract: In order to explore the effect of landfill time on the bacterial community structure of humus soil, taking humus in a domestic waste landfill in Jiangsu Province, China as the research object, Illumina Miseq high-throughput sequencing technology was used to analyze the bacterial community composition of humus and the surrounding soil with landfill time of 1-3 years, 3-6 years and 6-10 years. The results showed that the richness and diversity of the bacterial community in humus soil increased with the landfill time, but they were lower than those in the surrounding soil. Non metric multidimensional scaling (NMDS) analysis showed that the bacterial community structure difference was bigger in humus soil of different landfill time, but the similarity between the bacterial community in the soil surrounding the landfill site and the humus soil buried for 6-10 years was relatively high, which may be caused by the surrounding soil being polluted by landfill leachate to some extent. Firmicutes, Proteobacteria, Actinobacteriota, Chloroflexi and Bacteroidota were the dominant phylum in humus soil at each stage. The relative abundance of Firmicutes increased first and then decreased with the landfill time, the change of Chloroflexi was the opposite. The relative abundance of Bacteroidetes decreased at the later stage of landfill, while the relative abundance of Proteobacteria and Actinobacteria did not change significantly during the whole process. Redundant analysis (RDA) results showed that the change of bacterial community structure in humus soil was closely related to total nitrogen (TN), heavy metals (Cd, Zn) and pH.
-
Key words:
- landfill /
- landfill age /
- humus soil /
- bacterial community
-
[1] WANG Y N, XU R, WANG H W, et al. Insights into the stabilization of landfill by assessing the diversity and dynamic succession of bacterial community and its associated bio-metabolic process[J]. Science of the Total Environment, 2021, 768:145466.
doi: 10.1016/j.scitotenv.2021.145466[2] ZHOU H, MENG A H, LONG Y Q, et al. An overview of characteristics of municipal solid waste fuel in China:physical,chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014, 36:107-122.
doi: 10.1016/j.rser.2014.04.024[3] LEE D J, LU J S, CHANG J S. Pyrolysis synergy of municipal solid waste (MSW):a review[J]. Bioresource Technology, 2020, 318:123912.
doi: 10.1016/j.biortech.2020.123912[4] VAVERKOVÁ M D, WINKLER J, ADAMCOVÁ D, et al. Municipal solid waste landfill-vegetation succession in an area transformed by human impact[J]. Ecological Engineering, 2019, 129:109-114.
doi: 10.1016/j.ecoleng.2019.01.020[5] 黄楚雨, 韩华, 康敏娟, 等. 非正规垃圾堆放点垃圾质量及筛分产物比例精准勘测方法研究[J]. 环境卫生工程, 2020, 28(5):33-37.HUANG C Y, HAN H, KANG M J, et al. Accurate survey method study of waste quality and screening product proportion in informal waste dump sites[J]. Environmental Sanitation Engineering, 2020, 28(5):33-37. [6] KROOK J, SVENSSON N, EKLUND M. Landfill mining:a critical review of two decades of research[J]. Waste Management, 2012, 32(3):513-520.
doi: 10.1016/j.wasman.2011.10.015[7] JONES P T, GEYSEN D, TIELEMANS Y, et al. Enhanced Landfill Mining in view of multiple resource recovery:a critical review[J]. Journal of Cleaner Production, 2013, 55:45-55.
doi: 10.1016/j.jclepro.2012.05.021[8] 金奕胜, 郭小平, 张成梁. 添加矿化垃圾腐殖土对绿化土壤物理特性的影响[J]. 中国水土保持科学, 2015, 13(1):101-105.JIN Y S, GUO X P, ZHANG C L. Effects of adding humus from aged refuse on physical properties of landscaping soil[J]. Science of Soil and Water Conservation, 2015, 13(1):101-105. [9] 张后虎, 田静思, 张毅敏, 等. 矿化垃圾填料对污水中氮磷去除能力的动力学研究[J]. 土木建筑与环境工程, 2010, 32(6):127-131.ZHANG H H, TIAN J S, ZHANG Y M, et al. Kinetic analysis on phosphorus adsorption,phosphorus desorption,nitrification,and denitrification by using mineralized refuse[J]. Journal of Civil,Architectural & Environmental Engineering, 2010, 32(6):127-131. [10] 陈云敏, 刘晓成, 徐文杰, 等. 填埋生活垃圾稳定化特征与可开采性分析:以我国第一代卫生填埋场为例[J]. 中国科学:技术科学, 2019, 49(2):199-211.
doi: 10.1360/N092018-00140CHEN Y M, LIU X C, XU W J, et al. Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste:case of a typical landfill in China[J]. Scientia Sinica Technologica, 2019, 49(2):199-211. doi: 10.1360/N092018-00140[11] GU Z P, CHEN W M, WANG F, et al. A pilot-scale comparative study of bioreactor landfills for leachate decontamination and municipal solid waste stabilization[J]. Waste Management, 2020, 103:113-121.
doi: 10.1016/j.wasman.2019.12.023[12] 开颜, 王亚楠, 孙英杰, 等. 填埋场古细菌垂直分布格局及其与垃圾降解程度响应特征[J]. 环境科学学报, 2021, 41(3):1040-1049.KAI Y, WANG Y N, SUN Y J, et al. Archaea vertical distribution in landfill ang its response characteristics to waste degradation degree[J]. Acta Scientiae Circumstantiae, 2021, 41(3):1040-1049. [13] 黄耀民, 王亚楠, 孙英杰, 等. 短期填埋龄垃圾堆体内微生物群落结构与种群分布特征[J]. 环境科学学报, 2019, 39(12):4122-4131.HUANG Y M, WANG Y N, SUN Y J, et al. Microbial community structure and population distribution characteristics in short-term landfill refuse[J]. Acta Scientiae Circumstantiae, 2019, 39(12):4122-4131. [14] 刘洪杰, 徐晶, 赵由才, 等. 生活垃圾填埋场微生物群落结构与功能[J]. 环境卫生工程, 2017, 25(2):5-9.LIU H J, XU J, ZHAO Y C, et al. Microbial community structure and function in municipal solid waste landfill[J]. Environmental Sanitation Engineering, 2017, 25(2):5-9. [15] STALEY B F, de LOS REYES Ⅲ F L, WANG L, et al. Microbial ecological succession during municipal solid waste decomposition[J]. Applied Microbiology and Biotechnology, 2018, 102(13):5731-5740.
doi: 10.1007/s00253-018-9014-5[16] HE H D, LI W C, YU R Q, et al. Illumina-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination[J]. Pedosphere, 2017, 27(3):569-578.
doi: 10.1016/S1002-0160(17)60352-7[17] WEN P, HUANG Y Y, QIU Z P, et al. Microbial response during treatment of different types of landfill leachate in a semi-aerobic aged refuse biofilter[J]. Chemosphere, 2021, 262:127822.
doi: 10.1016/j.chemosphere.2020.127822[18] 胡宝富, 杜文利, 田娟, 等. 非正规生活垃圾填埋场矿化垃圾资源化利用技术:以东莞市非正规垃圾填埋场为例[J]. 环境卫生工程, 2018, 26(5):21-24.HU B F, DU W L, TIAN J, et al. Resource utilization technology of aged refuse in informal landfill:a case study on informal landfill of Dongguan[J]. Environmental Sanitation Engineering, 2018, 26(5):21-24. [19] SOMANI M, DATTA M, RAMANA G V, et al. Contaminants in soil-like material recovered by landfill mining from five old dumps in India[J]. Process Safety and Environmental Protection, 2020, 137:82-92.
doi: 10.1016/j.psep.2020.02.010[20] 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618—2018[M]. 北京: 中国环境出版集团, 2019. [21] 王瑜堂, 张军, 岳波, 等. 村镇生活垃圾重金属含量及其土地利用中的环境风险分析[J]. 农业环境科学学报, 2017, 36(8):1634-1639.WANG Y T, ZHANG J, YUE B, et al. Heavy metal content of the rural solid waste and its land utilization environmental risk analysis[J]. Journal of Agro-Environment Science, 2017, 36(8):1634-1639. [22] ALAM R, AHMED Z, HOWLADAR M F. Evaluation of heavy metal contamination in water,soil and plant around the open landfill site Mogla Bazar in Sylhet,Bangladesh[J]. Groundwater for Sustainable Development, 2020, 10:100311.
doi: 10.1016/j.gsd.2019.100311[23] ABU-DAABES M, QDAIS H A, ALSYOURI H. Assessment of heavy metals and organics in municipal solid waste leachates from landfills with different ages in Jordan[J]. Journal of Environmental Protection, 2013, 4(4):344-352.
doi: 10.4236/jep.2013.44041[24] 高天鹏, 万子栋, 付靖雯, 等. 重金属污染对金川矿区原生植物根际细菌群落的影响[J]. 兰州大学学报(自然科学版), 2020, 56(4):493-501.GAO T P, WAN Z D, FU J W, et al. Effects of heavy metal pollution on rhizosphere bacterial community of autochthonous plants in Jinchuan mining area[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(4):493-501. [25] 姚美辰, 段亮, 张恒亮, 等. 辽河保护区人工湿地微生物群落结构及分布规律[J]. 环境工程技术学报, 2019, 9(3):233-238.YAO M C, DUAN L, ZHANG H L, et al. Microbial community structure and distribution of constructed wetlands in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology, 2019, 9(3):233-238. [26] SEKHOHOLA-DLAMINI L, TEKERE M. Microbiology of municipal solid waste landfills:a review of microbial dynamics and ecological influences in waste bioprocessing[J]. Biodegradation, 2020, 31(1/2):1-21. [27] LIU S J, XI B D, QIU Z P, et al. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals[J]. Science of the Total Environment, 2019, 651:909-916.
doi: 10.1016/j.scitotenv.2018.09.267[28] SONG L Y, WANG Y Q, ZHAO H P, et al. Composition of bacterial and archaeal communities during landfill refuse decomposition processes[J]. Microbiological Research, 2015, 181:105-111.
doi: 10.1016/j.micres.2015.04.009[29] ZAINUN M Y, SIMARANI K. Metagenomics profiling for assessing microbial diversity in both active and closed landfills[J]. Science of the Total Environment, 2018, 616/617:269-278. [30] XU S, LU W J, LIU Y T, et al. Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq)[J]. Waste Management, 2017, 63:41-48.
doi: 10.1016/j.wasman.2016.07.047[31] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9):1801-1820.XIAN W D, ZHANG X T, LI W J. Research status and prospect on bacterial phylum chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9):1801-1820. [32] FAN X F, XING P. The vertical distribution of sediment archaeal community in the “black bloom” disturbing Zhushan Bay of Lake Taihu[J]. Archaea (Vancouver,B C), 2016, 2016:8232135. [33] 李大乐, 陈建文, 张红, 等. 铜污染对土壤细菌群落结构及重金属抗性基因的影响[J]. 环境科学学报, 2021, 41(3):1082-1090.LI D L, CHEN J W, ZHANG H, et al. Effects of copper pollution on soil bacterial community structure and heavy-metal resistance genes[J]. Acta Scientiae Circumstantiae, 2021, 41(3):1082-1090. [34] LI S Z, ZHAO B, JIN M, et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter[J]. Journal of Hazardous Materials, 2020, 400:123255.
doi: 10.1016/j.jhazmat.2020.123255[35] LI C C, QUAN Q, GAN Y D, et al. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management[J]. Science of the Total Environment, 2020, 749:141555.
doi: 10.1016/j.scitotenv.2020.141555[36] WANG X L, CAO A X, ZHAO G Z, et al. Microbial community structure and diversity in a municipal solid waste landfill[J]. Waste Management, 2017, 66:79-87.
doi: 10.1016/j.wasman.2017.04.023[37] CHODAK M, GOŁEBIEWSKI M, MORAWSKA-PŁOSKONKA J, et al. Diversity of microorganisms from forest soils differently polluted with heavy metals[J]. Applied Soil Ecology, 2013, 64:7-14.
doi: 10.1016/j.apsoil.2012.11.004[38] ZHANG C, NIE S, LIANG J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016,557/ 558:785-790. [39] 林耀奔, 叶艳妹, 吴次芳, 等. 水田土壤细菌群落对不同重金属污染水平的响应分析:以A县为例[J]. 环境科学学报, 2020, 40(1):224-233.LIN Y B, YE Y M, WU C F, et al. Response analysis of soil bacterial community to different heavy metal pollution levels in paddy fields:a case study of A County[J]. Acta Scientiae Circumstantiae, 2020, 40(1):224-233.
点击查看大图
计量
- 文章访问数: 720
- HTML全文浏览量: 351
- PDF下载量: 59
- 被引次数: 0