Effects of influent mode on the microbial community structure in anaerobic baffled reactor during the treatment of dispersed swine flushing wastewater
-
摘要:
以厌氧折流板反应器(ABR)处理分散养猪冲洗废水,对比平行运行的序批进水和连续进水ABR反应器在不同进水负荷(3个运行阶段)下的微生物群落结构变化及差异。结果表明:主坐标分析(PCoA)和聚类分析均证实,相同进水负荷时,连续进水和序批进水ABR装置的微生物群落结构整体上较接近。进水方式对微生物群落结构的影响主要在ABR的第一格(也是COD的主要去除区域)。第三阶段,连续进水装置丰度排名前5的属为Clostridium_sensu_stricto_1、Norank_f_Anaerolineaceae、Christensenellaceae_R-7_group、Norank_c_Bacteroidetes_vadinHA17和Norank_p_Candidate_division_WS6,其相对丰度分别为9.04%、8.14%、7.08%、5.97%和4.88%;序批进水装置丰度排名前5的属为Norank_c_Bacteroidetes_vadinHA17、Clostridium_sensu_stricto_1、Christensenellaceae_R-7_group、Norank_f_Anaerolineaceae和Desulfocapsa,其相对丰度分别为10.03%、7.38%、6.92%、5.58%和4.29%。费舍尔精确检验证实,第三阶段序批进水和连续进水 ABR 反应器的15种丰度较高的微生物中,13种有显著性差异,其中12种P≤0.001。
Abstract:The treatment of flushing wastewater from scattered piggeries by anaerobic baffled reactor (ABR) was explored. The variations and differences of the microbial communities in the ABRs respectively with the influent mode-sequencing batch and the continuous operation under different pollution loads (3 operational phases) were compared. The results showed that, according to PCoA and cluster analysis, the microbial communities between the sequencing batch and continuous ABRs were similar under the same pollution load. The influence of the influent mode on microbial community structure was mainly presented in the first compartment (also the main removal area of COD). The five dominant genera in the continuous operation ABR were Clostridium_sensu_stricto_1, Norank_f_Anaerolineaceae, Christensenellaceae_R-7_group, Norank_c_Bacteroidetes_vadinHA17 and Norank_p_Candidate_division_WS6, with the relative abundance of 9.04%, 8.14%, 7.08%, 5.97% and 4.88%, respectively. While the five dominant genera in the sequencing batch ABR were Norank_c_Bacteroidetes_vadinHA17, Clostridium_sensu_stricto_1, Christensenellaceae_R-7_group, Norank_f_Anaerolineaceae and Desulfocapsa, with the relative abundance of 10.03%, 7.38%, 6.92%, 5.58% and 4.29%, respectively. Fisher’ exact test verified that there were 13 genera showing significant difference among the top 15 genera with high abundance in the two ABRs in the third stage, and the difference of 12 genera showed extremely difference (P≤0.001).
-
-
[1] HAN Z F, MIAO Y, DONG J, et al. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Frontiers of Environmental Science & Engineering,2019,13(4):1-11. [2] 苗莹, 沈志强, 周岳溪, 等.功能分区型人工湿地处理养殖废水厌氧消化液的性能[J]. 环境科学研究,2016,29(7):1075-1082.MIAO Y, SHEN Z Q, ZHOU Y X, et al. Performance of a functional zoning constructed wetland for the treatment of digested swine wastewater[J]. Research of Environmental Sciences,2016,29(7):1075-1082. [3] 牟锐, 沈志强, 周岳溪, 等.生物沸石人工湿地处理分散养猪冲洗水性能[J]. 环境科学,2016,37(9):3508-3517.MOU R, SHEN Z Q, ZHOU Y X, et al. Performance of bio-zeolite constructed wetland in dispersed swine wastewater treatment[J]. Environmental Science,2016,37(9):3508-3517. [4] 肖宇, 沈志强, 周岳溪, 等.厌氧折流板反应器对分散养猪冲洗水有机物去除特性研究[J]. 农业环境科学学报,2015,34(10):2004-2011. doi: 10.11654/jaes.2015.10.024XIAO Y, SHEN Z Q, ZHOU Y X, et al. Removal of organics in scattered piggery washing wastewater by anaerobic baffled reactor[J]. Journal of Agro-Environment Science,2015,34(10):2004-2011. doi: 10.11654/jaes.2015.10.024 [5] JIANG M M, QIAO W, REN Z R, et al. Influence of operation conditions on methane production from swine wastewater treated by a self-agitation anaerobic reactor[J]. International Biodeterioration & Biodegradation,2019,143:104710. [6] 刘建伟, 刘雪丽, 高柳堂, 等.强化复合厌氧反应器处理农村生活污水的快速启动[J]. 环境工程学报,2020,14(9):2339-2345. doi: 10.12030/j.cjee.202001101LIU J W, LIU X L, GAO L T, et al. Rapid start-up of enhanced hybrid anaerobic reactor for rural domestic sewage treatment[J]. Chinese Journal of Environmental Engineering,2020,14(9):2339-2345. doi: 10.12030/j.cjee.202001101 [7] 张超, 张国珍, 师旭军, 等.弹性填料对ABR间歇启动的影响研究[J]. 水处理技术,2020,46(10):93-97.ZHANG C, ZHANG G Z, SHI X J, et al. Study on the effect of elastic filler on the intermittent start-up of ABR[J]. Technology of Water Treatment,2020,46(10):93-97. [8] 沈志强, 马晓蕾, 董婧, 等.间歇式厌氧折流板反应器处理分散养猪冲洗水的影响因素[J]. 环境工程技术学报,2020,10(5):831-836. doi: 10.12153/j.issn.1674-991X.20190219SHEN Z Q, MA X L, DONG J, et al. Influencing factors of sequencing batch anaerobic baffle reactor for the treatment of disperse piggery washing wastewater[J]. Journal of Environmental Engineering Technology,2020,10(5):831-836. doi: 10.12153/j.issn.1674-991X.20190219 [9] 杨梓亨, 宋卫锋, 程亚杰, 等.ABR反应器处理苯胺黑药废水及其微生物种群结构[J]. 环境科学研究,2017,30(9):1448-1454.YANG Z H, SONG W F, CHENG Y J, et al. Treatment of aniline aerofloat wastewater using anaerobic baffled reactor and analysis of activated sludge community[J]. Research of Environmental Sciences,2017,30(9):1448-1454. [10] 唐涛涛, 李江, 吴永贵, 等.不同类型秸秆对污泥厌氧消化特性及细菌群落结构的影响[J]. 环境科学研究,2019,32(11):1936-1944.TANG T T, LI J, WU Y G, et al. Effects of different types of straw on sludge anaerobic digestion characteristics and bacterial community structure[J]. Research of Environmental Sciences,2019,32(11):1936-1944. [11] GULHANE M, PANDIT P, KHARDENAVIS A, et al. Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor[J]. Renewable Energy,2017,101:59-66. doi: 10.1016/j.renene.2016.08.021 [12] CHEN C J, SUN F Q, ZHANG H Q, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology,2016,216:571-578. doi: 10.1016/j.biortech.2016.05.115 [13] SZEKERES E, BARICZ A, CHIRIAC C M, et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals[J]. Environmental Pollution,2017,225:304-315. doi: 10.1016/j.envpol.2017.01.054 [14] CHEN J F, YANG Y W, LIU Y Y, et al. Bacterial community shift in response to a deep municipal tail wastewater treatment system[J]. Bioresource Technology,2019,281:195-201. doi: 10.1016/j.biortech.2019.02.099 [15] ZHANG L, SHEN Z, FANG W K, et al. Composition of bacterial communities in municipal wastewater treatment plant[J]. Science of the Total Environment,2019,689:1181-1191. doi: 10.1016/j.scitotenv.2019.06.432 [16] 吴琼, 王思珍, 张适, 等.基于16S rRNA高通量测序技术分析安格斯牛瘤胃微生物多样性和功能预测的研究[J]. 微生物学杂志,2020,40(2):49-56. doi: 10.3969/j.issn.1005-7021.2020.02.006WU Q, WANG S Z, ZHANG S, et al. Functional prediction of rumen microbial diversity and functions of Angus cattle based on 16S rRNA high-throughput sequencing[J]. Journal of Microbiology,2020,40(2):49-56. doi: 10.3969/j.issn.1005-7021.2020.02.006 [17] ZIGANSHIN A M, WINTSCHE B, SEIFERT J, et al. Spatial separation of metabolic stages in a tube anaerobic baffled reactor: reactor performance and microbial community dynamics[J]. Applied Microbiology and Biotechnology,2019,103(9):3915-3929. doi: 10.1007/s00253-019-09767-2 [18] INABA T, HORI T, NAVARRO R R, et al. Revealing sludge and biofilm microbiomes in membrane bioreactor treating piggery wastewater by non-destructive microscopy and 16S rRNA gene sequencing[J]. Chemical Engineering Journal,2018,331:75-83. doi: 10.1016/j.cej.2017.08.095 [19] SU C Y, DENG Q J, LU Y X, et al. Effects of hydraulic retention time on the performance and microbial community of an anaerobic baffled reactor-bioelectricity Fenton coupling reactor for treatment of traditional Chinese medicine wastewater[J]. Bioresource Technology,2019,288:121508. doi: 10.1016/j.biortech.2019.121508 [20] AMATO P, CHRISTNER B C. Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis[J]. Applied and Environmental Microbiology,2009,75(3):711-718. doi: 10.1128/AEM.02193-08 [21] BAKERMANS C, AYALA-DEL-RÍO H L, PONDER M A, et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(6):1285-1291. doi: 10.1099/ijs.0.64043-0 [22] 张杰, 侯强川, 张文羿, 等.基于单细胞扩增技术的细菌多样性及功能基因分析[J]. 基因组学与应用生物学,2020,39(7):3060-3069.ZHANG J, HOU Q C, ZHANG W Y, et al. Analysis of intestinal microbial diversity and function gene based on single cell amplification technique[J]. Genomics and Applied Biology,2020,39(7):3060-3069. [23] WANG S, WANG L, DENG L W, et al. Performance of autotrophic nitrogen removal from digested piggery wastewater[J]. Bioresource Technology,2017,241:465-472. doi: 10.1016/j.biortech.2017.05.153 [24] NGUYEN T H, WATARI T, HATAMOTO M, et al. Evaluation of a combined anaerobic baffled reactor-downflow hanging sponge biosystem for treatment of synthetic dyeing wastewater[J]. Environmental Technology & Innovation,2020,19:100913. □