留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市典型雨水工程污染物去除效果监测分析

凌文翠 李焕利 方瑶瑶 刘桂中 孙长虹

凌文翠,李焕利,方瑶瑶,等.北京市典型雨水工程污染物去除效果监测分析[J].环境工程技术学报,2022,12(3):738-743 doi: 10.12153/j.issn.1674-991X.20210151
引用本文: 凌文翠,李焕利,方瑶瑶,等.北京市典型雨水工程污染物去除效果监测分析[J].环境工程技术学报,2022,12(3):738-743 doi: 10.12153/j.issn.1674-991X.20210151
LING W C,LI H L,FANG Y Y,et al.Monitoring and analysis of pollutants removal efficiencies of typical rainwater projects in Beijing City[J].Journal of Environmental Engineering Technology,2022,12(3):738-743 doi: 10.12153/j.issn.1674-991X.20210151
Citation: LING W C,LI H L,FANG Y Y,et al.Monitoring and analysis of pollutants removal efficiencies of typical rainwater projects in Beijing City[J].Journal of Environmental Engineering Technology,2022,12(3):738-743 doi: 10.12153/j.issn.1674-991X.20210151

北京市典型雨水工程污染物去除效果监测分析

doi: 10.12153/j.issn.1674-991X.20210151
基金项目: 国家重点研发计划项目(2016YFC0503601);北京市科技计划课题(Z161100004516015);北京市生态环境保护科学研究院基金项目
详细信息
    作者简介:

    凌文翠(1984—),女,副研究员,博士,主要从事水污染防治与水环境管理研究,lingwencui@cee.cn

    通讯作者:

    孙长虹(1970—),女,研究员,主要从事水环境与水资源保护研究,sunchanghong@cee.cn

  • 中图分类号: X820.6

Monitoring and analysis of pollutants removal efficiencies of typical rainwater projects in Beijing City

  • 摘要:

    为比较不同雨水工程的污染物去除效果,对生物滞留池、植草沟、透水混凝土铺装、透水砖铺装和植被砖铺装5种措施的雨水污染物去除效果进行监测。结果显示:生物滞留池对COD、SS、氨氮和总磷均有较好的去除效果,出水达到GB 3838—2002《地表水环境质量标准》Ⅲ类水质标准,特别是COD和SS的平均去除率分别达82.1%和70.7%;植草沟对氨氮有较好的去除效果,平均去除率达91.3%,但其总磷出水浓度高于进水;透水砖铺装有氨氮释放现象,造成出水氨氮浓度升高;对比3种透水铺装发现,透水混凝土的污染物去除能力综合最优,其对COD、氨氮、总磷和SS的平均去除率分别为57.0%、72.7%、79.4%和82.2%。根据监测结果结合文献报道,认为生物滞留池和透水混凝土铺装具有较好的污染物削减效果,而植草沟对雨水中氨氮的去除具有显著优势。在实际工程应用中,应根据控制目标、成本和污染物去除效能,因地制宜地选择合适的雨水净化措施。

     

  • 图  1  不同雨水工程对污染物的去除效果[7-9,11,19-20,23,25-26,28-32]

    Figure  1.  Pollutants removal efficiency of different rainwater projects

    表  1  生物滞留池对污染物的去除效果

    Table  1.   Pollutants removal efficiency of bioretention

    项目COD氨氮总磷SS
    进水浓度/(mg/L)72~861.81~2.240.18~0.5312~24<0.07~0.13<0.006~0.075
    出水浓度/(mg/L)12~160.67~0.710.12~0.17<5<0.07<0.006~0.012
    去除率/%79~8667~736~7558~790~46.286.7~92.2
    下载: 导出CSV

    表  2  植草沟对污染物的去除效果

    Table  2.   Pollutants removal efficiency of grass swale

    项目COD氨氮总磷SS
    进水浓度/(mg/L)21~381.32~1.900.10~0.249~21
    出水浓度/(mg/L)12~200.08~0.170.18~0.56<5~8
    去除率/%9~6890~96−460~1320~76
    下载: 导出CSV

    表  3  透水铺装对污染物的去除效果

    Table  3.   Pollutants removal efficiency of permeable pavements

    项目COD氨氮总磷SS
    沥青路面/(mg/L) 33~36 1.09~2.09 0.04~0.20 21~35
    透水混凝土 进水浓度/(mg/L) 22~25 1.49~2.61 0.08~0.22 24~38
    出水浓度/(mg/L) 9~11 0.43~0.50 0.02~0.03 <5
    去除率/% 54~59 69~83 63~93 79~87
    透水砖 进水浓度/(mg/L) 12~16 0.45~1.81 0.09~0.21 20~26
    出水浓度/(mg/L) 8~10 1.33~1.68 0.06~0.08 10~13
    去除率/% 23~50 −239~22 22~57 35~62
    植被砖 进水浓度/(mg/L) 13~15 2.03~2.46 0.14~0.20 36~58
    出水浓度/(mg/L) 8~10 1.05~1.94 0.08~0.10 17~23
    去除率/% 23~40 13~52 29~58 43~66
    下载: 导出CSV
  • [1] 北京市水务局. 2019年北京市水务统计年鉴[R]. 北京: 北京市水务局, 2020.
    [2] 王文亮, 李俊奇, 车伍, 等.海绵城市建设指南解读之城市径流总量控制指标[J]. 中国给水排水,2015,31(8):18-23.

    WANG W L, LI J Q, CHE W, et al. Explanation of sponge city development technical guide: planning index for urban total runoff volume capture[J]. China Water & Wastewater,2015,31(8):18-23.
    [3] 赵建伟, 单保庆, 尹澄清.城市面源污染控制工程技术的应用及进展[J]. 中国给水排水,2007,23(12):1-5. doi: 10.3321/j.issn:1000-4602.2007.12.001

    ZHAO J W, SHAN B Q, YIN C Q. Application and progress in engineering technologies for controlling urban non-point source pollution[J]. China Water & Wastewater,2007,23(12):1-5. doi: 10.3321/j.issn:1000-4602.2007.12.001
    [4] 徐晓梅, 黎巍, 何佳, 等.昆明主城合流污水调蓄池截污效能模拟[J]. 环境科学研究,2012,25(10):1180-1186.

    XU X M, WEI W, HE J, et al. Simulation study on the interception efficiency of rainwater storage tanks in Kunming[J]. Research of Environmental Sciences,2012,25(10):1180-1186.
    [5] 冉阳, 付峥嵘, 马满英, 等.改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报,2021,11(1):173-180.

    RAN Y, FU Z R, MA M Y, et al. Research and application of amended bioretention tank in rainwater treatment of sponge city[J]. Journal of Environmental Engineering Technology,2021,11(1):173-180.
    [6] 杨敦, 徐丽花, 周琪.潜流式人工湿地在暴雨径流污染控制中应用[J]. 农业环境保护,2002,21(4):334-336.

    YANG D, XU L H, ZHOU Q. Application of subsurface flow constructed wetlands in controlling storm runoff pollution[J]. Agro-Environmental Protection,2002,21(4):334-336.
    [7] 朋四海, 黄俊杰, 李田.过滤型生物滞留池径流污染控制效果研究[J]. 给水排水,2014,50(6):38-42. doi: 10.3969/j.issn.1002-8471.2014.06.009
    [8] 胡爱兵, 李子富, 张书函, 等.模拟生物滞留池净化城市机动车道路雨水径流[J]. 中国给水排水,2012,28(13):75-79. doi: 10.3969/j.issn.1000-4602.2012.13.019

    HU A B, LI Z F, ZHANG S H, et al. Simulated bioretention pond for improving quality of stormwater runoff on urban traffic road[J]. China Water & Wastewater,2012,28(13):75-79. doi: 10.3969/j.issn.1000-4602.2012.13.019
    [9] 毛月鹏, 汪志荣, 史怡然, 等.生物滞留池对屋面径流基本污染物的控制[J]. 环境污染与防治,2020,42(1):29-34.

    MAO Y P, WANG Z R, SHI Y R, et al. Control of basic pollutants in roof runoff by bioretention cells[J]. Environmental Pollution & Control,2020,42(1):29-34.
    [10] LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science & Technology,2014,48(6):3403-3410.
    [11] 杨银川, 肖冰, 崔贺, 等.典型海绵工程单项措施的污染物减排效应分析[J]. 华东师范大学学报(自然科学版),2018(6):43-49.

    YANG Y C, XIAO B, CUI H, et al. Analysis of the pollutant emission reduction effect of a typical sponge project[J]. Journal of East China Normal University (Natural Science),2018(6):43-49.
    [12] HUNT W F, JARRETT A R, SMITH J T, et al. Evaluating bioretention hydrology and nutrient removal at three field sites in north Carolina[J]. Journal of Irrigation and Drainage Engineering,2006,132(6):600-608. doi: 10.1061/(ASCE)0733-9437(2006)132:6(600)
    [13] BROWN R A, HUNT W F. Improving bioretention/biofiltration performance with restorative maintenance[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2012,65(2):361-367. doi: 10.2166/wst.2012.860
    [14] HENDERSON C, GREENWAY M, PHILLIPS I. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2007,55(4):183-191. doi: 10.2166/wst.2007.108
    [15] YANG X H, MEI Y, HE J, et al. Comprehensive assessment for removing multiple pollutants by plants in bioretention systems[J]. Chinese Science Bulletin,2014,59(13):1446-1453. doi: 10.1007/s11434-014-0200-2
    [16] 仇付国, 陈丽霞.雨水生物滞留系统控制径流污染物研究进展[J]. 环境工程学报,2016,10(4):1593-1602.

    QIU F G, CHEN L X. Research progress on contaminants removal from stormwater runoff by bioretention[J]. Chinese Journal of Environmental Engineering,2016,10(4):1593-1602.
    [17] 马效芳, 陶权, 姚景, 等.生物滞留池用于城市雨水径流控制研究现状和展望[J]. 环境工程,2015,33(6):6-9.

    MA X F, TAO Q, YAO J, et al. Review of situations and prospects of bioretention for the control of urban stormwater runoff[J]. Environmental Engineering,2015,33(6):6-9.
    [18] 章茹, 周文斌, 金可礼.深圳茜坑水库生态草沟对非点源污染物去除效率的评价[J]. 南昌大学学报(理科版),2009,33(1):56-60.

    ZHANG R, ZHOU W B, JIN K L. Field evaluation of a grassed swale for control non-point source pollution at Shenzhen Xikeng Reservoir[J]. Journal of Nanchang University (Natural Science),2009,33(1):56-60.
    [19] 荆武, 邬长友, 张辰, 等.典型植草沟对武汉雨水径流污染的控制效果研究[J]. 市政技术,2019,37(5):227-230. doi: 10.3969/j.issn.1009-7767.2019.05.062

    JING W, WU C Y, ZHANG C, et al. On runoff pollution control effect of typical sod swales in Wuhan[J]. Municipal Engineering Technology,2019,37(5):227-230. doi: 10.3969/j.issn.1009-7767.2019.05.062
    [20] 付恒阳, 李榜晏.三种LID的雨水污染物去除效果评价[J]. 干旱区资源与环境,2017,31(9):92-97.

    FU H Y, LI B Y. Evaluating the effectiveness of three low impact development devices in the removal of stormwater contaminants[J]. Journal of Arid Land Resources and Environment,2017,31(9):92-97.
    [21] 张辰. 植草沟对雨水径流量及径流污染控制研究[D]. 武汉: 华中科技大学, 2019.
    [22] 李海燕, 胡磊, 王崇臣.道路雨水径流重金属含量测定[J]. 环境化学,2009,28(1):145-146. doi: 10.3321/j.issn:0254-6108.2009.01.033
    [23] 黄俊杰, 沈庆然, 李田.植草沟控制道路径流污染效果的现场实验研究[J]. 环境科学,2015,36(6):2109-2115.

    HUANG J J, SHEN Q R, LI T. Performance of grass swales for controlling pollution of roadway runoff in field experiments[J]. Environmental Science,2015,36(6):2109-2115.
    [24] NILES S F, CHACÓN-PATIÑO M L, PUTNAM S P, et al. Characterization of an asphalt binder and photoproducts by Fourier transform ion cyclotron resonance mass spectrometry reveals abundant water-soluble hydrocarbons[J]. Environmental Science & Technology,2020,54(14):8830-8836.
    [25] 秦余朝. 城市典型透水铺装地面径流减控与污染物削减效果研究[D]. 西安: 西安理工大学, 2017.
    [26] 李志辉, 李星, 杨艳玲, 等.透水铺装去除污染效能及清洗特性研究[J]. 给水排水,2018,54(9):62-67. doi: 10.3969/j.issn.1002-8471.2018.09.013

    LI Z H, LI X, YANG Y L, et al. Experimental study on pollution efficiency and cleaning characteristics of permeable pavement[J]. Water & Wastewater Engineering,2018,54(9):62-67. doi: 10.3969/j.issn.1002-8471.2018.09.013
    [27] 孔向东.三种典型LID渗透减排措施控制效果比选[J]. 铁道勘察,2015,41(4):86-90. doi: 10.3969/j.issn.1672-7479.2015.04.023

    KONG X D. Control effects comparison of three kinds of typical LID infiltration and emission reduction measures: Beijing case study[J]. Railway Investigation and Surveying,2015,41(4):86-90. doi: 10.3969/j.issn.1672-7479.2015.04.023
    [28] 郭慧慧.低影响开发设施对污染物削减效果的评估[J]. 给水排水,2019,55(增刊1):108-109.
    [29] 王俊岭, 张亚琦, 秦全城, 等.一种新型透水铺装对雨水径流污染物的去除试验研究[J]. 安全与环境学报,2019,19(2):643-652.

    WANG J L, ZHANG Y Q, QIN Q C, et al. Removing efficiency of pollutants from rainwater runoff via new permeable pavement[J]. Journal of Safety and Environment,2019,19(2):643-652.
    [30] 张佳炜, 李田, 张庭秀.浅基质层干植草沟运行效果的现场实验[J]. 环境科学,2020,41(9):4105-4112.

    ZHANG J W, LI T, ZHANG T X. Performance assessment of field-scale dry grass swale with shallow substrate layer[J]. Environmental Science,2020,41(9):4105-4112.
    [31] 宫曼莉, 左俊杰, 任心欣, 等.透水路面-生物滞留池组合道路的城市面源污染控制效果评估[J]. 环境科学,2018,39(9):4096-4104.

    GONG M L, ZUO J J, REN X X, et al. Evaluation of effect of urban non-point source pollution control on porous asphalt-bio-retention combined roads[J]. Environmental Science,2018,39(9):4096-4104.
    [32] 王俊岭, 张智贤, 秦全城, 等.改良型透水铺装对弱透水土质地区的水质控制试验[J]. 水资源保护,2019,35(3):63-68. doi: 10.3880/j.issn.1004-6933.2019.03.011

    WANG J L, ZHANG Z X, QIN Q C, et al. Water quality control test of modified permeable pavement in weak permeable soil quality area[J]. Water Resources Protection,2019,35(3):63-68. □ doi: 10.3880/j.issn.1004-6933.2019.03.011
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  198
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回