Monitoring and analysis of pollutants removal efficiencies of typical rainwater projects in Beijing City
-
摘要:
为比较不同雨水工程的污染物去除效果,对生物滞留池、植草沟、透水混凝土铺装、透水砖铺装和植被砖铺装5种措施的雨水污染物去除效果进行监测。结果显示:生物滞留池对COD、SS、氨氮和总磷均有较好的去除效果,出水达到GB 3838—2002《地表水环境质量标准》Ⅲ类水质标准,特别是COD和SS的平均去除率分别达82.1%和70.7%;植草沟对氨氮有较好的去除效果,平均去除率达91.3%,但其总磷出水浓度高于进水;透水砖铺装有氨氮释放现象,造成出水氨氮浓度升高;对比3种透水铺装发现,透水混凝土的污染物去除能力综合最优,其对COD、氨氮、总磷和SS的平均去除率分别为57.0%、72.7%、79.4%和82.2%。根据监测结果结合文献报道,认为生物滞留池和透水混凝土铺装具有较好的污染物削减效果,而植草沟对雨水中氨氮的去除具有显著优势。在实际工程应用中,应根据控制目标、成本和污染物去除效能,因地制宜地选择合适的雨水净化措施。
Abstract:In order to compare the pollutant removal effects of different rainwater projects, the rainwater pollutant removal efficiencies of five measurements, including bioretention, grass swale, permeable concrete pavement, permeable brick pavement and vegetation brick pavement, were monitored. The results showed that the bioretention had high removal efficiencies on COD, SS, NH3-N and TP, and the effluent water quality reached Class Ⅲ standard of Environmental Quality Standards for Surface Water (GB 3838-2002). Especially for COD and SS, the average removal rates reached 82.1% and 70.7%, respectively. Grass swale had a good removal effect on NH3-N, with an average removal rate of 91.3%. However, TP concentration of effluent was higher than that of influent. The permeable brick pavement released NH3-N, causing an increase of its concentration in the effluent. Comparing the three types of permeable pavements, the pollutant removal ability of the permeable concrete was the best comprehensively, and its average removal rates of COD, NH3-N, TP and SS were 57.0%, 72.7%, 79.4%, and 82.2%, respectively. According to the monitoring results and literature reports comprehensively, it was found that bioretention and permeable concrete pavement had higher pollutant removal effects, and grass swale had outstanding performance in removing NH3-N from rainwater. In the practical application of rainwater projects, appropriate measurement should be selected according to control objectives, costs and pollutant removal efficiency.
-
Key words:
- bioretention /
- grass swales /
- permeable pavement /
- rainwater pollutant /
- removal efficiency
-
表 1 生物滞留池对污染物的去除效果
Table 1. Pollutants removal efficiency of bioretention
项目 COD 氨氮 总磷 SS 铅 铜 进水浓度/(mg/L) 72~86 1.81~2.24 0.18~0.53 12~24 <0.07~0.13 <0.006~0.075 出水浓度/(mg/L) 12~16 0.67~0.71 0.12~0.17 <5 <0.07 <0.006~0.012 去除率/% 79~86 67~73 6~75 58~79 0~46.2 86.7~92.2 表 2 植草沟对污染物的去除效果
Table 2. Pollutants removal efficiency of grass swale
项目 COD 氨氮 总磷 SS 进水浓度/(mg/L) 21~38 1.32~1.90 0.10~0.24 9~21 出水浓度/(mg/L) 12~20 0.08~0.17 0.18~0.56 <5~8 去除率/% 9~68 90~96 −460~13 20~76 表 3 透水铺装对污染物的去除效果
Table 3. Pollutants removal efficiency of permeable pavements
项目 COD 氨氮 总磷 SS 沥青路面/(mg/L) 33~36 1.09~2.09 0.04~0.20 21~35 透水混凝土 进水浓度/(mg/L) 22~25 1.49~2.61 0.08~0.22 24~38 出水浓度/(mg/L) 9~11 0.43~0.50 0.02~0.03 <5 去除率/% 54~59 69~83 63~93 79~87 透水砖 进水浓度/(mg/L) 12~16 0.45~1.81 0.09~0.21 20~26 出水浓度/(mg/L) 8~10 1.33~1.68 0.06~0.08 10~13 去除率/% 23~50 −239~22 22~57 35~62 植被砖 进水浓度/(mg/L) 13~15 2.03~2.46 0.14~0.20 36~58 出水浓度/(mg/L) 8~10 1.05~1.94 0.08~0.10 17~23 去除率/% 23~40 13~52 29~58 43~66 -
[1] 北京市水务局. 2019年北京市水务统计年鉴[R]. 北京: 北京市水务局, 2020. [2] 王文亮, 李俊奇, 车伍, 等.海绵城市建设指南解读之城市径流总量控制指标[J]. 中国给水排水,2015,31(8):18-23.WANG W L, LI J Q, CHE W, et al. Explanation of sponge city development technical guide: planning index for urban total runoff volume capture[J]. China Water & Wastewater,2015,31(8):18-23. [3] 赵建伟, 单保庆, 尹澄清.城市面源污染控制工程技术的应用及进展[J]. 中国给水排水,2007,23(12):1-5. doi: 10.3321/j.issn:1000-4602.2007.12.001ZHAO J W, SHAN B Q, YIN C Q. Application and progress in engineering technologies for controlling urban non-point source pollution[J]. China Water & Wastewater,2007,23(12):1-5. doi: 10.3321/j.issn:1000-4602.2007.12.001 [4] 徐晓梅, 黎巍, 何佳, 等.昆明主城合流污水调蓄池截污效能模拟[J]. 环境科学研究,2012,25(10):1180-1186.XU X M, WEI W, HE J, et al. Simulation study on the interception efficiency of rainwater storage tanks in Kunming[J]. Research of Environmental Sciences,2012,25(10):1180-1186. [5] 冉阳, 付峥嵘, 马满英, 等.改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报,2021,11(1):173-180.RAN Y, FU Z R, MA M Y, et al. Research and application of amended bioretention tank in rainwater treatment of sponge city[J]. Journal of Environmental Engineering Technology,2021,11(1):173-180. [6] 杨敦, 徐丽花, 周琪.潜流式人工湿地在暴雨径流污染控制中应用[J]. 农业环境保护,2002,21(4):334-336.YANG D, XU L H, ZHOU Q. Application of subsurface flow constructed wetlands in controlling storm runoff pollution[J]. Agro-Environmental Protection,2002,21(4):334-336. [7] 朋四海, 黄俊杰, 李田.过滤型生物滞留池径流污染控制效果研究[J]. 给水排水,2014,50(6):38-42. doi: 10.3969/j.issn.1002-8471.2014.06.009 [8] 胡爱兵, 李子富, 张书函, 等.模拟生物滞留池净化城市机动车道路雨水径流[J]. 中国给水排水,2012,28(13):75-79. doi: 10.3969/j.issn.1000-4602.2012.13.019HU A B, LI Z F, ZHANG S H, et al. Simulated bioretention pond for improving quality of stormwater runoff on urban traffic road[J]. China Water & Wastewater,2012,28(13):75-79. doi: 10.3969/j.issn.1000-4602.2012.13.019 [9] 毛月鹏, 汪志荣, 史怡然, 等.生物滞留池对屋面径流基本污染物的控制[J]. 环境污染与防治,2020,42(1):29-34.MAO Y P, WANG Z R, SHI Y R, et al. Control of basic pollutants in roof runoff by bioretention cells[J]. Environmental Pollution & Control,2020,42(1):29-34. [10] LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science & Technology,2014,48(6):3403-3410. [11] 杨银川, 肖冰, 崔贺, 等.典型海绵工程单项措施的污染物减排效应分析[J]. 华东师范大学学报(自然科学版),2018(6):43-49.YANG Y C, XIAO B, CUI H, et al. Analysis of the pollutant emission reduction effect of a typical sponge project[J]. Journal of East China Normal University (Natural Science),2018(6):43-49. [12] HUNT W F, JARRETT A R, SMITH J T, et al. Evaluating bioretention hydrology and nutrient removal at three field sites in north Carolina[J]. Journal of Irrigation and Drainage Engineering,2006,132(6):600-608. doi: 10.1061/(ASCE)0733-9437(2006)132:6(600) [13] BROWN R A, HUNT W F. Improving bioretention/biofiltration performance with restorative maintenance[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2012,65(2):361-367. doi: 10.2166/wst.2012.860 [14] HENDERSON C, GREENWAY M, PHILLIPS I. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2007,55(4):183-191. doi: 10.2166/wst.2007.108 [15] YANG X H, MEI Y, HE J, et al. Comprehensive assessment for removing multiple pollutants by plants in bioretention systems[J]. Chinese Science Bulletin,2014,59(13):1446-1453. doi: 10.1007/s11434-014-0200-2 [16] 仇付国, 陈丽霞.雨水生物滞留系统控制径流污染物研究进展[J]. 环境工程学报,2016,10(4):1593-1602.QIU F G, CHEN L X. Research progress on contaminants removal from stormwater runoff by bioretention[J]. Chinese Journal of Environmental Engineering,2016,10(4):1593-1602. [17] 马效芳, 陶权, 姚景, 等.生物滞留池用于城市雨水径流控制研究现状和展望[J]. 环境工程,2015,33(6):6-9.MA X F, TAO Q, YAO J, et al. Review of situations and prospects of bioretention for the control of urban stormwater runoff[J]. Environmental Engineering,2015,33(6):6-9. [18] 章茹, 周文斌, 金可礼.深圳茜坑水库生态草沟对非点源污染物去除效率的评价[J]. 南昌大学学报(理科版),2009,33(1):56-60.ZHANG R, ZHOU W B, JIN K L. Field evaluation of a grassed swale for control non-point source pollution at Shenzhen Xikeng Reservoir[J]. Journal of Nanchang University (Natural Science),2009,33(1):56-60. [19] 荆武, 邬长友, 张辰, 等.典型植草沟对武汉雨水径流污染的控制效果研究[J]. 市政技术,2019,37(5):227-230. doi: 10.3969/j.issn.1009-7767.2019.05.062JING W, WU C Y, ZHANG C, et al. On runoff pollution control effect of typical sod swales in Wuhan[J]. Municipal Engineering Technology,2019,37(5):227-230. doi: 10.3969/j.issn.1009-7767.2019.05.062 [20] 付恒阳, 李榜晏.三种LID的雨水污染物去除效果评价[J]. 干旱区资源与环境,2017,31(9):92-97.FU H Y, LI B Y. Evaluating the effectiveness of three low impact development devices in the removal of stormwater contaminants[J]. Journal of Arid Land Resources and Environment,2017,31(9):92-97. [21] 张辰. 植草沟对雨水径流量及径流污染控制研究[D]. 武汉: 华中科技大学, 2019. [22] 李海燕, 胡磊, 王崇臣.道路雨水径流重金属含量测定[J]. 环境化学,2009,28(1):145-146. doi: 10.3321/j.issn:0254-6108.2009.01.033 [23] 黄俊杰, 沈庆然, 李田.植草沟控制道路径流污染效果的现场实验研究[J]. 环境科学,2015,36(6):2109-2115.HUANG J J, SHEN Q R, LI T. Performance of grass swales for controlling pollution of roadway runoff in field experiments[J]. Environmental Science,2015,36(6):2109-2115. [24] NILES S F, CHACÓN-PATIÑO M L, PUTNAM S P, et al. Characterization of an asphalt binder and photoproducts by Fourier transform ion cyclotron resonance mass spectrometry reveals abundant water-soluble hydrocarbons[J]. Environmental Science & Technology,2020,54(14):8830-8836. [25] 秦余朝. 城市典型透水铺装地面径流减控与污染物削减效果研究[D]. 西安: 西安理工大学, 2017. [26] 李志辉, 李星, 杨艳玲, 等.透水铺装去除污染效能及清洗特性研究[J]. 给水排水,2018,54(9):62-67. doi: 10.3969/j.issn.1002-8471.2018.09.013LI Z H, LI X, YANG Y L, et al. Experimental study on pollution efficiency and cleaning characteristics of permeable pavement[J]. Water & Wastewater Engineering,2018,54(9):62-67. doi: 10.3969/j.issn.1002-8471.2018.09.013 [27] 孔向东.三种典型LID渗透减排措施控制效果比选[J]. 铁道勘察,2015,41(4):86-90. doi: 10.3969/j.issn.1672-7479.2015.04.023KONG X D. Control effects comparison of three kinds of typical LID infiltration and emission reduction measures: Beijing case study[J]. Railway Investigation and Surveying,2015,41(4):86-90. doi: 10.3969/j.issn.1672-7479.2015.04.023 [28] 郭慧慧.低影响开发设施对污染物削减效果的评估[J]. 给水排水,2019,55(增刊1):108-109. [29] 王俊岭, 张亚琦, 秦全城, 等.一种新型透水铺装对雨水径流污染物的去除试验研究[J]. 安全与环境学报,2019,19(2):643-652.WANG J L, ZHANG Y Q, QIN Q C, et al. Removing efficiency of pollutants from rainwater runoff via new permeable pavement[J]. Journal of Safety and Environment,2019,19(2):643-652. [30] 张佳炜, 李田, 张庭秀.浅基质层干植草沟运行效果的现场实验[J]. 环境科学,2020,41(9):4105-4112.ZHANG J W, LI T, ZHANG T X. Performance assessment of field-scale dry grass swale with shallow substrate layer[J]. Environmental Science,2020,41(9):4105-4112. [31] 宫曼莉, 左俊杰, 任心欣, 等.透水路面-生物滞留池组合道路的城市面源污染控制效果评估[J]. 环境科学,2018,39(9):4096-4104.GONG M L, ZUO J J, REN X X, et al. Evaluation of effect of urban non-point source pollution control on porous asphalt-bio-retention combined roads[J]. Environmental Science,2018,39(9):4096-4104. [32] 王俊岭, 张智贤, 秦全城, 等.改良型透水铺装对弱透水土质地区的水质控制试验[J]. 水资源保护,2019,35(3):63-68. doi: 10.3880/j.issn.1004-6933.2019.03.011WANG J L, ZHANG Z X, QIN Q C, et al. Water quality control test of modified permeable pavement in weak permeable soil quality area[J]. Water Resources Protection,2019,35(3):63-68. □ doi: 10.3880/j.issn.1004-6933.2019.03.011