Analysis of DOM composition, the formation potential of trihalomethanes and its removal from water source of Z City in winter
-
摘要: 以冬季Z市水源地2条入库河流为研究对象,通过联合运用三维荧光光谱、树脂分离分级和紫外可见分光光度法,探究水源地原水中溶解性有机物(DOM)的荧光成分、来源、组成、腐殖化程度与消毒副产物三卤甲烷(THMs)生成势的关系。结果表明:三维荧光光谱解析出水源地2条入库河流原水中共有类蛋白物质(C1)、紫外腐殖酸类物质(C2)、陆地/人造腐殖质类物质(C3)3个荧光峰;水源地的2条入库河流(Q河与X河)的3个荧光峰峰值分别为4.50、10.75、7.56和1.33、9.24、7.56;荧光源指数(FI)与生物源指数(BIX)均体现出水源地原水中的DOM主要为陆源输入;此外,水源地原水中的DOM化学分级之后,5个组分浓度表现为疏水性有机酸(HoA)>亲水物质(HiM)>疏水中性有机物(HoN)>疏水碱性有机物(HoB)>弱疏水酸性有机物(wHoA);Q河原水氯化后产生CHCl3、CHClBr2和CHBrCl2 3种成分,X河氯化后产生CHCl3和CHBrCl2 2种成分,说明河水并没未受到明显的工业污染。水源地2条入库河流原水的DOM各化学分级组分的THMs生成势的研究结果表明,THMs的主要前驱物为HoA和HiM,而HoA、HiM、wHoA 3种组分对THMs的生成能力均较强,与紫外吸收特性SUVA相一致,说明生成THMs的能力也很强,应选取工业聚合氯化铝进行强化混凝去除。
-
关键词:
- 冬季水源 /
- 溶解性有机物 /
- 分级表征 /
- 三卤甲烷生成势(THMFP) /
- 三维荧光光谱
Abstract: Taking the water source of Z City in winter as the research object, the relationship between the fluorescence composition, source, composition, humification degree of dissolved organic matter (DOM) and the generation potential of trihalomethanes (THMs) was investigated by the combined use of 3D fluorescence spectroscopy, resin separation and classification, and UV-vis spectrophotometry. The results showed that a total of three fluorescence peaks were resolved by 3D fluorescence spectra: protein-like material (C1), ultraviolet humic acid material (C2) and terrestrial/artificial humic material (C3) in the raw water of the water source. The three fluorescence peaks in Q River and X River were 4.50, 10.75, 7.56 and 1.33, 9.24, 7.56, respectively. The fluorescence source index (FI) and biogenic index (BIX) both reflected that DOM of the water source was mainly terrestrial source input. In addition, after the chemical classification of DOM of the water source, the concentrations of five components were as follows: hydrophobic organic acids (HoA) > hydrophilic substances (HiM) > hydrophobic neutral organic substances (HoN) > hydrophobic alkaline organic substances (HoB) > weak hydrophobic acidic organic substances (wHoA). CHCl 3, CHClBr2 and CHBrCl2 were produced by chlorination of Q River raw water, and CHCl3 and CHBrCl2 were produced by chlorination of X River, indicating that the river water was not significantly polluted by industry. At the same time, the study of disinfection by-product THMs generation potential was conducted on each chemically graded component of DOM of the water source, and it was found that the main precursors of THMs were HoA and HiM, and HoA, HiM and wHoA had a strong ability to generate THMs, which was consistent with SUVA values of UV absorption characteristics, indicating that the ability to generate THMs was also strong. The industrial polyaluminium chloride should be selected to enhance coagulation for removal. -
表 1 Z市水源地原水基础数据
Table 1. Basic data of raw water in water source of Z City
入库河流 电导率/(μS/cm) pH 温度/℃ TOC浓度/(mg/L) Q河 776 7.85 −0.5 5.875 X河 988 7.77 −0.5 5.683 表 2 Ex/Em及相应的原水DOM荧光组分特征
Table 2. Ex/Em wave lengths and corresponding raw water DOM components characteristics
Ex/Em/(nm/nm) 荧光组分类型 Q河峰值 X河峰值 280/316 C1(类蛋白物质) 4.50 1.33 300/378 C2(紫外腐殖酸) 10.75 9.24 250/416 C3(陆地/人造腐殖质) 7.56 7.56 表 3 Z市水源地原水氯化后产生的THMs不同成分的浓度
Table 3. Concentrations of different components of THMs produced after chlorination of raw water in the water source of Z City
入库河流 THMs成分 气相色谱参数 最终浓度/(μg/L) 出峰时间/min 响应 峰高 Q河 氯仿 10.761 332 764 108 900.54 10.790 3 二溴一氯甲烷 14.038 113 198.63 0.007 5 一溴二氯甲烷 14.373 2 769 840.56 0.107 4 溴仿 — — — — X河 氯仿 10.761 340 891 111 645.51 11.053 9 二溴一氯甲烷 — — — — 一溴二氯甲烷 14.379 3174 956.62 0.123 1 溴仿 — — — — 注:—表示未检出。 -
[1] CHOW A T, DAHLGREN R A, HARRISON J A. Watershed sources of disinfection byproduct precursors in the Sacramento and San Joaquin Rivers, California[J]. Environmental Science & Technology,2007,41(22):7645-7652. [2] 刘艳芳, 王启山, 岳尚超, 等.基于疏水性能及相对分子质量分析消毒副产物前体物[J]. 给水排水,2011,47(7):128-132. doi: 10.3969/j.issn.1002-8471.2011.07.035LIU Y F, WANG Q S, YUE S C, et al. Analysis of disinfection by-product precursors based on hydrophobicity and molecular weight[J]. Water & Wastewater Engineering,2011,47(7):128-132. doi: 10.3969/j.issn.1002-8471.2011.07.035 [3] RAHMAN M B, DRISCOLL T, COWIE C, et al. Disinfection by-products in drinking water and colorectal cancer: a meta-analysis[J]. International Journal of Epidemiology,2010,39(3):733-745. doi: 10.1093/ije/dyp371 [4] BRUGGER A, REITNER B, KOLAR I, et al. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria[J]. Freshwater Biology,2001,46(8):997-1016. doi: 10.1046/j.1365-2427.2001.00743.x [5] NGUYEN H V M, SHIN J K, HUR J. Multivariate analysis for spatial distribution of dissolved organic matters in a large river-type dam reservoir[J]. Environmental Monitoring and Assessment,2011,183(1/2/3/4):425-436. [6] 文杨. 冰封期城市河流DOM结构特性及分布特征[D]. 沈阳: 辽宁大学, 2014. [7] 康跃惠, 宫正宇, 王子健, 等.官厅水库及永定河水中挥发性有机物分布规律[J]. 环境科学学报,2001,21(3):338-343. doi: 10.3321/j.issn:0253-2468.2001.03.017KANG Y H, GONG Z Y, WANG Z J, et al. The study of VOCs in Guanting Reservoir and Yongdinghe River[J]. Acta Scientiae Circumstantiae,2001,21(3):338-343. doi: 10.3321/j.issn:0253-2468.2001.03.017 [8] 乔春光, 魏群山, 王东升, 等.典型南方水源溶解性有机物分子量分布变化及去除特性[J]. 环境科学学报,2007,27(2):195-200. doi: 10.3321/j.issn:0253-2468.2007.02.004QIAO C G, WEI Q S, WANG D S, et al. Molecular weight distribution and removal characters of DOM in the typical source water in south of China[J]. Acta Scientiae Circumstantiae,2007,27(2):195-200. doi: 10.3321/j.issn:0253-2468.2007.02.004 [9] 陈莹. 张家口市北水源(水源地)地下水数值模拟[D]. 石家庄: 河北地质大学, 2019. [10] 云晋, 郝桂珍, 宋凤芝, 等.永定河上游水质污染特征及评价[J]. 河北建筑工程学院学报,2018,36(4):80-84. doi: 10.3969/j.issn.1008-4185.2018.04.017YUN J, HAO G Z, SONG F Z, et al. Characteristics and evaluation of water pollution in the upper reaches of Yongding River[J]. Journal of Hebei Institute of Architecture and Civil Engineering,2018,36(4):80-84. doi: 10.3969/j.issn.1008-4185.2018.04.017 [11] 郝桂珍, 宋凤芝, 徐利, 等.清水河流域农业非点源污染模拟及特征分析[J]. 中国农村水利水电,2021(1):111-118. doi: 10.3969/j.issn.1007-2284.2021.01.021HAO G Z, SONG F Z, XU L, et al. Simulation and characteristic analysis of agriculture non-point source pollution in Qingshui River Basin[J]. China Rural Water and Hydropower,2021(1):111-118. doi: 10.3969/j.issn.1007-2284.2021.01.021 [12] KARANFIL T, ERDOGAN I, SCHLAUTMAN M A. Selecting filter membranes for measuring DOC and UV254[J]. Journal American Water Works Association,2003,95(3):86-100. doi: 10.1002/j.1551-8833.2003.tb10317.x [13] MALCOLM R L, MACCARTHY P. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water[J]. Environment International,1992,18(6):597-607. doi: 10.1016/0160-4120(92)90027-2 [14] 林细萍, 卢益新, 张德明, 等.THMFP及HAAFP的测定方法[J]. 中国给水排水,2003,19(10):98-100. doi: 10.3321/j.issn:1000-4602.2003.10.035 [15] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710. [16] 张倩, 董靖, 吉芳英, 等.新建人工深水湖泊沉积物上覆水和孔隙水中溶解性有机质的光谱特征[J]. 湖泊科学,2018,30(1):112-120. doi: 10.18307/2018.0111ZHANG Q, DONG J, JI F Y, et al. Spectral characteristics of dissolved organic matter in overlying water and pore water of newly-built artificial lake sediments[J]. Journal of Lake Sciences,2018,30(1):112-120. doi: 10.18307/2018.0111 [17] 宋晓娜, 于涛, 张远, 等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报,2010,30(11):2321-2331.SONG X N, YU T, ZHANG Y, et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae,2010,30(11):2321-2331. [18] JAFFÉ R, BOYER J N, LU X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry,2004,84(3/4):195-210. [19] 隋志男, 郅二铨, 姚杰, 等.三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报,2015,5(2):114-120.SUI Z N, ZHI E Q, YAO J, et al. Characterization of DOM composition and origin using three-dimensional fluorescence spectroscopy coupled with region integration method in Qixing wetland[J]. Journal of Environmental Engineering Technology,2015,5(2):114-120. [20] YLLA I, ROMANÍ A M, SABATER S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature[J]. Microbial Ecology,2012,64(3):593-604. doi: 10.1007/s00248-012-0062-6 [21] 朱国锋, 蒲焘, 何元庆, 等.典型季风型温冰川消融期融水化学日变化特征[J]. 环境科学,2012,33(12):4300-4306.ZHU G F, PU T, HE Y Q, et al. Chemical composition and daily variation of melt water during ablation season in monsoonal temperate glacier region: a case study of Baishui glacier No. 1[J]. Environmental Science,2012,33(12):4300-4306. [22] 赵华标, 姚檀栋, 徐柏青.慕士塔格卡尔塔马克冰川作用区的水文与水化学特征[J]. 冰川冻土,2006,28(2):269-275. doi: 10.3969/j.issn.1000-0240.2006.02.018ZHAO H B, YAO T D, XU B Q. Hydrological and hydrochemical features of Kartamak Glacier area in Muztag Ata[J]. Journal of Glaciology and Geocryology,2006,28(2):269-275. doi: 10.3969/j.issn.1000-0240.2006.02.018 [23] ŚWIETLIK J, DĄBROWSKA A, RACZYK-STANISŁAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research,2004,38(3):547-558. doi: 10.1016/j.watres.2003.10.034 [24] YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry,2003,82(3/4):255-271. [25] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645 [26] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research,2011,45(2):797-809. doi: 10.1016/j.watres.2010.09.005 [27] 申钊颖, 弓晓峰, 江良, 等. 利用荧光区域积分法解析鄱阳湖DOM组成及来源[J]. 环境科学与技术, 2019, 42(5): 196-203.SHEN Z Y, GONG X F, JIANG L, et al. Analysis of the composition and source of DOM in Poyang Lake by using regional integration method[J]. Environmental Science & Technology, 2019, 42(5): 196-203. [28] 张博, 高建文, 范绍锦, 等.南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066ZHANG B, GAO J W, FAN S J, et al. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066 [29] 颜秉斐, 彭剑峰, 邓齐玉, 等.白塔堡河水体DOM分布特征及来源[J]. 环境工程技术学报,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190YAN B F, PENG J F, DENG Q Y, et al. DOM distribution characteristics and source analysis of Baitabu River[J]. Journal of Environmental Engineering Technology,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190 [30] 彭进湖, 钟惠舟, 何嘉莉, 等.三维荧光评估不同净水工艺中有机物去除效果[J]. 供水技术,2018,12(1):34-38. doi: 10.3969/j.issn.1673-9353.2018.01.008PENG J H, ZHONG H Z, HE J L, et al. Three-dimensional fluorescence assessment of organic matter removal in different water purification processes[J]. Water Technology,2018,12(1):34-38. doi: 10.3969/j.issn.1673-9353.2018.01.008 [31] MOSTOFA K M G, WU F C, LIU C Q, et al. Characterization of Nanming River (southwestern China) sewerage-impacted pollution using an excitation-emission matrix and PARAFAC[J]. Limnology,2010,11(3):217-231. doi: 10.1007/s10201-009-0306-4 [32] 乔春光, 魏群山, 王东升, 等.南方天然水体DOM的化学分级、变化特征及三卤甲烷生成势(THMFP)特性研究[J]. 环境科学学报,2006,26(6):944-948. doi: 10.3321/j.issn:0253-2468.2006.06.012QIAO C G, WEI Q S, WANG D S, et al. Fractionation and characterization of DOM and the THMFP feature in the South-China source water[J]. Acta Scientiae Circumstantiae,2006,26(6):944-948. doi: 10.3321/j.issn:0253-2468.2006.06.012 [33] 魏晓婷. 于桥水库典型消毒副产物及其前体物研究[D]. 天津: 天津大学, 2014. [34] 梁远. 滦河水体溶解性有机物的综合分级表征及其混凝去除研究[D]. 北京: 北京交通大学, 2008.