Simulation of the reduction effect of vegetation buffer zone on phosphorus load of farmland NPS pollution in Qiandao Lake area based on VFSMOD model
-
摘要: 植被缓冲带是控制农业面源污染的有力生态措施,其净化能力受到许多因素影响,设计施工时应考虑不同污染源区的具体情况。以千岛湖地区农田径流磷负荷削减为例,应用VFSMOD模型分析植被缓冲带宽度、坡度以及降水量对入流泥沙削减的影响,并估算拟合了入流总磷(TP)负荷的削减变化情况。模拟结果表明:植被缓冲带削减能力与缓冲带宽度呈正相关,与缓冲带坡度、降水量呈负相关;植被缓冲带坡度为3%时,对污染物削减效果最好;植被缓冲带对污染物的削减一般集中在前段的10 m。根据模拟结果,提出基于不同长度径流区丰、平、枯水文年植被缓冲带宽度设计的工作曲线,在设计时可根据期望的削减目标以及实际的径流区立地情况,因地制宜地确定相应的缓冲带宽度。研究可为植被缓冲带净化农田面源污染时宽度设计提供指导。Abstract: Vegetation buffer zone is a powerful ecological measure to control agricultural non-point source (NPS) pollution. Its purification capacity is affected by many factors. The specific conditions of different pollution source areas should be considered in the design and construction of the vegetation buffer zone. Taking the farmland runoff in Qiandao Lake as an example, the VFSMOD model was used to analyze the influence of vegetation buffer band width, slope and rainfall on the reduction of inflow sediment. The reduction and change of the inflow total phosphorus (TP) load were estimated and fitted. The simulation results showed that the reduction capacity of the vegetation buffer zone was positively correlated with the width of buffer zone and negatively correlated with the rainfall and slope; when the slope of the vegetation buffer zone was 3%, the pollutant reduction effect was the best; the reduction of pollutants was generally concentrated on the front 10 m section of the vegetation buffer zone. According to the simulation results, a design work curve based on the width of vegetation buffer zone in the rich, flat and dry years in runoff areas of different lengths was proposed. During the design, the corresponding buffer zone width could be flexibly determined according to the expected reduction target and the actual runoff area site conditions. This study could provide technical guidance for the width design of vegetation buffer zone when it was used to purify farmland NPS pollution.
-
表 1 典型平水年不同强度降水天数分布情况
Table 1. Distribution of precipitation days with different intensities in typical flat water years
降水强度等级 降水量分级/mm 降水天数 占比/% 累计降水量/mm 占比/% 小雨 0~5 79 52.67 130.7 8.55 5~10 21 14.00 147.1 9.62 中雨 10~15 16 10.67 197.9 12.94 15~20 11 7.33 187.6 12.27 20~25 6 4.00 133.3 8.72 大雨 25~30 2 1.33 52.7 3.45 30~40 8 5.33 274.6 17.96 40~50 2 1.33 88.7 5.80 暴雨 50~60 3 2.00 172.1 11.25 60~100 2 1.33 144.5 9.45 大暴雨 100~250 0 0 0.0 0 特大暴雨 ≥250 0 0 0.0 0 合计 150 100 1529.2 100 表 2 VFSMOD模型模拟参数
Table 2. VFSMOD model simulation parameters
参数 取值 缓冲带长度/ m 10 缓冲带宽度/m 5~30 各段糙率系数/(s/cm1/3) 0.24 坡度/% 3~30 VKS/(m/s) 3.67×10−6 湿润峰平均吸力/m 0.089 9 土壤初始含水量/(m3/m3) 0.200 土壤饱和含水量/(m3/m3) 0.499 表面填洼含水量/m 0 植物茎干间距/cm 2.15 植物高度/cm 18 NPART 3 入流泥沙浓度/(g/cm3) 0.002 上源区宽度/m 50 上源区径流区长度/m 100 -
[1] 杨林章, 冯彦房, 施卫明, 等.我国农业面源污染治理技术研究进展[J]. 中国生态农业学报,2013,21(1):96-101.YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture,2013,21(1):96-101. [2] 陶玉炎, 耿金菊, 王红军, 等.太湖水体溶解态磷的时空变化特征[J]. 中国环境监测,2013,29(5):84-90. doi: 10.3969/j.issn.1002-6002.2013.05.017TAO Y Y, GENG J J, WANG H J, et al. Spatio-tempo variations of dissolved phosphorus concentrations in Lake Taihu[J]. Environmental Monitoring in China,2013,29(5):84-90. doi: 10.3969/j.issn.1002-6002.2013.05.017 [3] 叶斌, 黄兰英, 李春华, 等.太湖竺山湾缓冲带草林系统生长状态及土壤性质分析[J]. 环境工程技术学报,2015,5(5):411-417. doi: 10.3969/j.issn.1674-991X.2015.05.065YE B, HUANG L Y, LI C H, et al. Investigation on growth situation and soil property of grass-forest system in lake buffer zone of Zhushan Bay, Lake Taihu[J]. Journal of Environmental Engineering Technology,2015,5(5):411-417. doi: 10.3969/j.issn.1674-991X.2015.05.065 [4] 侯利萍, 何萍, 钱金平, 等.河岸缓冲带宽度确定方法研究综述[J]. 湿地科学,2012,10(4):500-506. doi: 10.3969/j.issn.1672-5948.2012.04.017HOU L P, HE P, QIAN J P, et al. A review on determination methods for width of riparian buffer[J]. Wetland Science,2012,10(4):500-506. doi: 10.3969/j.issn.1672-5948.2012.04.017 [5] MUÑOZ-CARPENA R, PARSONS J E, GILLIAM J W. Numerical approach to the overland flow process in vegetative filter strips[J]. Transactions of the ASAE,1993,36(3):761-770. doi: 10.13031/2013.28395 [6] DOSSKEY M G, HELMERS M J, EISENHAUER D E. A design aid for determining width of filter strips[J]. Journal of Soil and Water Conservation,2008,63(4):232-241. doi: 10.2489/jswc.63.4.232 [7] 杨寅群, 李怀恩, 史冬庆.VFSMOD模型对植被过滤带净化效果的模拟与适应性分析[J]. 环境科学,2010,31(11):2613-2618.YANG Y Q, LI H E, SHI D Q. Study on simulation of clarification for vegetative filter strips by VFSMOD model[J]. Environmental Science,2010,31(11):2613-2618. [8] 朱华民. 淳安年鉴2017[M]. 北京: 方志出版社, 2017. [9] MUÑOZ-CARPENA R, MILLER C T, PARSONS J E. A quadratic Petrov-Galerkin solution for kinematic wave overland flow[J]. Water Resources Research,1993,29(8):2615-2627. doi: 10.1029/93WR00610 [10] MUÑOZ-CARPENA R, PARSONS J E. VFSMOD-W vegetative filter strips modelling system. model documentation & user's manual. version 6. x[R]. Gainesville: University of Florida, 2011. [11] 谭湘萍, 闵怀.千岛湖生态环境主要问题及保护对策[J]. 环境污染与防治,2004,26(3):200-203. doi: 10.3969/j.issn.1001-3865.2004.03.014TAN X P, MIN H. Analysis of eco-environmental problems and control countermeasure in Qiandao Lake[J]. Environmental Pollution & Control,2004,26(3):200-203. doi: 10.3969/j.issn.1001-3865.2004.03.014 [12] 淳安县第一次地理国情普查公报[R]. 淳安: 淳安县住房和城乡建设局, 淳安县统计局, 2018. [13] 杨寅群, 李怀恩, 杨方社.基于数学模型的陕西黑河水源区植被过滤带效果评估[J]. 水科学进展,2013,24(1):42-48.YANG Y Q, LI H E, YANG F S. An assessment of the effectiveness of vegetated filter strips for Heihe River headwaters area using numerical simulation[J]. Advances in Water Science,2013,24(1):42-48. [14] 国家质量监督检验检疫总局, 中国国家标准化管理委员会.降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社, 2012. [15] MUÑOZ-CARPENA R, PARSONS J E, GILLIAM J W. Modeling hydrology and sediment transport in vegetative filter strips[J]. Journal of Hydrology,1999,214(1/2/3/4):111-129. [16] RAWLS W J, BRAKENSIEK D L. A procedure to predict Green-Apmt infiltration parameters[C]//Proceeding of American Society of Agricultural Engineerings(ASAE) Conference on advances in infiltration. Chicago: ASAE Publication, 1983(11): 102-112. [17] 席浩郡, 刘贝贝, 黄雅娟, 等.北京市北沙河小流域非点源氮、磷负荷估算与源解析[J]. 环境工程技术学报,2021,11(2):258-266. doi: 10.12153/j.issn.1674-991X.20200076XI H J, LIU B B, HUANG Y J, et al. Estimation and sources apportionment of non-point source nitrogen and phosphorus loads in Beishahe sub-catchment of Beijing[J]. Journal of Environmental Engineering Technology,2021,11(2):258-266. doi: 10.12153/j.issn.1674-991X.20200076 [18] 袁溪, 潘忠成, 李敏, 等.雨强和坡度对裸地径流颗粒物及磷素流失的影响[J]. 中国环境科学,2016,36(10):3099-3106. doi: 10.3969/j.issn.1000-6923.2016.10.038YUAN X, PAN Z C, LI M, et al. Influence of rainfall intensity and slope gradient on suspended substance and phosphorus losses in runoff[J]. China Environmental Science,2016,36(10):3099-3106. doi: 10.3969/j.issn.1000-6923.2016.10.038 [19] SCHMITT T J, DOSSKEY M G, HOAGLAND K D. Filter strip performance and processes for different vegetation, widths, and contaminants[J]. Journal of Environmental Quality,1999,28(5):1479-1489. [20] WANYAMA J, HERREMANS K, MAETENS W, et al. Effectiveness of tropical grass species as sediment filters in the riparian zone of Lake Victoria[J]. Soil Use and Management,2012,28(3):409-418. doi: 10.1111/j.1475-2743.2012.00409.x [21] 杨寅群. 植被过滤带对非点源污染物净化效果的初步研究[D]. 西安: 西安理工大学, 2009. [22] 胡威, 王毅力, 储昭升.草皮缓冲带对洱海流域面源污染的削减效果[J]. 环境工程学报,2015,9(9):4138-4144. doi: 10.12030/j.cjee.20150908HU W, WANG Y L, CHU Z S. Reduction effect of non-point pollution in Erhai Lake Basin through sward buffer strips[J]. Chinese Journal of Environmental Engineering,2015,9(9):4138-4144. doi: 10.12030/j.cjee.20150908 [23] 霍炜洁. 草地过滤带对农业非点源污染物的截留效应研究[D]. 北京: 中国水利水电科学研究院, 2013. [24] 黄满湘, 周成虎, 章申, 等.农田暴雨径流侵蚀泥沙流失及其对氮磷的富集[J]. 水土保持学报,2002,16(4):13-16. doi: 10.3321/j.issn:1009-2242.2002.04.004HUANG M X, ZHOU C H, ZHANG S, et al. Sediment transport and enrichment mechanisms of nitrogen and phosphorus under simulated rainfall condition[J]. Journal of Soil Water Conservation,2002,16(4):13-16. doi: 10.3321/j.issn:1009-2242.2002.04.004 [25] 王敏, 吴建强, 黄沈发, 等.不同坡度缓冲带径流污染净化效果及其最佳宽度[J]. 生态学报,2008,28(10):4951-4956. doi: 10.3321/j.issn:1000-0933.2008.10.040WANG M, WU J Q, HUANG S F, et al. Effects of slope and width of riparian buffer strips on runoff purification[J]. Acta Ecologica Sinica,2008,28(10):4951-4956. doi: 10.3321/j.issn:1000-0933.2008.10.040 [26] 孙晓涛. 植被过滤带拦截径流和泥沙效果的VFSMOD模型适用性研究[D]. 长沙: 中南林业科技大学, 2014. [27] 杨方社, 曹明明, 李怀恩, 等.基于VFSMOD模型的沙棘-灌草植被过滤带拦沙效果模拟[J]. 干旱区资源与环境,2017,31(6):71-75.YANG F S, CAO M M, LI H E, et al. Modeling the sediment retention effect of the vegetative filter strip composed of seabuckthorn-shrub and herbaceous vegetation[J]. Journal of Arid Land Resources and Environment,2017,31(6):71-75. [28] 申小波, 陈传胜, 张章, 等.不同宽度模拟植被过滤带对农田径流、泥沙以及氮磷的拦截效果[J]. 农业环境科学学报,2014,33(4):721-729. doi: 10.11654/jaes.2014.04.015SHEN X B, CHEN C S, ZHANG Z, et al. Interception of runoff, sediment, nitrogen and phosphorus by vegetative filter strips with different width in a simulated experiment[J]. Journal of Agro-Environment Science,2014,33(4):721-729. doi: 10.11654/jaes.2014.04.015 [29] 邓娜, 李怀恩, 史冬庆, 等.径流流量对植被过滤带净化效果的影响[J]. 农业工程学报,2012,28(4):124-129. doi: 10.3969/j.issn.1002-6819.2012.04.020DENG N, LI H, SHI D, et al. Influence of inflow rate of runoff on purification effectiveness of vegetative filter strip[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(4):124-129. doi: 10.3969/j.issn.1002-6819.2012.04.020 [30] DILLAHA T A, RENEAU R B, MOSTAGHIMI S, et al. Vegetative filter strips for agricultural nonpoint source pollution control[J]. Transactions of the ASAE,1989,32(2):0513-0519. doi: 10.13031/2013.31033 [31] 叶春, 李春华, 邓婷婷.湖泊缓冲带功能、建设与管理[J]. 环境科学研究,2013,26(12):1283-1289.YE C, LI C H, DENG T T. Study on the function, construction and management of lake buffer zones[J]. Research of Environmental Sciences,2013,26(12):1283-1289. ◇