Research progress of MBR in rural domestic wastewater treatment
-
摘要: 农村生活污水由于进水水质水量波动较大,较难选择合适的处理工艺,另外,部分缺水地区由于农村居民习惯生活污水被多次反复利用,导致农村生活污水中有机污染物浓度较城市生活污水偏高。膜生物反应器(MBR)由于具有占地面积小、生化处理效率高和出水水质好等优点,在污水处理领域有着广泛的应用。从MBR技术在国内农村生活污水和国外分散生活污水的应用现状、膜污染控制及能耗优化3个方面进行了综述。针对膜污染控制问题,建议从加强电场辅助控制膜污染,采用无机纳米材料对膜进行亲水改性和对污染机理深入探索等几个方面开展研究;针对节能降耗问题,建议从控制曝气入手,优化整体能耗,降低运行成本,从而促进MBR技术在农村地区的推广应用。Abstract: Due to the large fluctuation of the influent quality and quantity of rural domestic wastewater, it is not easy to choose the appropriate treatment technology. In addition, due to the rural residents’ habit of repeatedly using domestic wastewater in some areas of water shortage, the concentration of organic pollutants in rural domestic wastewater is higher than that in urban wastewater. Membrane bioreactor (MBR) has been widely used in the field of wastewater treatment because of its small footprint, high biochemical efficiency and good effluent quality. The application status of MBR technology in rural domestic wastewater at home and small-scale domestic wastewater at abroad, the membrane pollution control and the energy consumption optimization were reviewed. Aiming at the problem of membrane fouling control, it was suggested to conduct in-depth research from several aspects, such as strengthening electric field assistance in MBR pollution control, hydrophilic modification of membrane with inorganic nano materials and in-depth exploration of pollution mechanism. In view of the problem of energy saving and consumption reduction, it was suggested to control the aeration to optimize the overall energy consumption and reduce the operation cost, so as to promote the dissemination and application of MBR in rural areas.
-
表 1 生活污水中污染物来源及组成[6]
Table 1. Sources and composition of pollutants in domestic wastewater
类别 污水来源 占比/% COD/
〔kg/(人·d)〕BOD/
﹝kg/(人·d)﹞TP/
〔kg/(人·d)〕灰水 厨房 16 11.0 16.0 0.07 洗涤 46 1.8 3.7 0.10 黑水 厕所 26 9.1 27.5 0.70 其他 12 总计 100 21.9 47.2 0.87 表 2 国内MBR处理农村生活污水效果对比
Table 2. Comparison of domestic MBR treatment effect of rural domestic wastewater
工艺 HRT 进水浓度/(mg/L) 出水浓度/(mg/L) 去除率/% COD NH3-N TP SS COD NH3-N TP SS COD NH3-N TP SS IMBR[16]
5~6 h 450~730 73~108 60~190 19~31 1.9~3.1 0 93.1 93.8 100 A2O-MBR一体
化设备[17]497 31 8.8 278 21.4 0.24 0.42 95.8 99 95 100 MBBR-A2O /MBR[18] 1.25 d 230.67~343 23.35~40.15 1.3~3.5 34.33 3.19 0.63 87.86 89.92 74.95 水解酸化-接触氧化-MBR一体化装置[19] 250~300 20~25 2~3 200~300 35 3.7 0.3 5.1 >86 >80 >85 >97 倒置A2O/MBR一
体化装置[20]352 34 3.2 184 27.8 11.3 0.38 5.4 92 95 88 97 C-MBR[21] 2 h/4 h 554.8 24.77 4.99 34.9 1.13 4.57/0.42 93.68 95 12.3/90.9 MBR[22] 2.5~3 h 40~150 5~12(春夏);
<5(冬)10~40 <0.3 80 90 倒置A2O-MBR[23] 31 h 706 217.4 110 26.7 83.8 88.2 表 3 国外MBR处理生活污水效果对比
Table 3. Comparison of MBR treatment effect of domestic wastewater abroad
工艺 HRT/h 进水浓度/(mg/L) 出水浓度/(mg/L) 去除率/% COD NH3-N TP TSS COD NH3-N TP TSS COD NH3-N TP TSS SMBR与紫外消毒[25] 466 1.3 95 59 0.4 8 87 69 92 SMBR[26] 356±181 2.47±1.4 1.64±0.37 45±39 0.74±0.38 0 88±9.5 88±7.3 56±18 100 MBR模型[27] 19.5 302 3 57.5 29 3 1.3 90 0 98 EC-SMBR[28] 15 463 11.3 78 51±49 2.5±1.4 0 88.9 77.8 100 MBR[29] 36 222.7~376.4 6.85~23.84 3.39~10.35 43.92~70.91 2.64~9.12 0.13~1.38 3.12~9.02 0 97~99 86~98 8~17 100 -
[1] 于婷, 于法稳.农村生活污水治理相关研究进展[J]. 生态经济,2019,35(7):209-213.YU T, YU F W. Literature review of the research on rural domestic sewage treatment[J]. Ecological Economy,2019,35(7):209-213. [2] 侯立安, 席北斗, 张列宇, 等. 农村生活污水处理与再生利用[M]. 北京: 化学工业出版社, 2019: 2-7. [3] PAULO P L, AZEVEDO C, BEGOSSO L, et al. Natural systems treating greywater and blackwater on-site: inegrating treatment, reuse and landscaping[J]. Ecological Engineering,2013,50:95-100. doi: 10.1016/j.ecoleng.2012.03.022 [4] LI F Y, WICHMANN K, OTTERPOHL R. Review of the technological approaches for grey water treatment and reuses[J]. Science of the Total Environment,2009,407(11):3439-3449. doi: 10.1016/j.scitotenv.2009.02.004 [5] ZHA X, MA J, LU X W. Performance of a coupling device combined energy-efficient rotating biological contactors with anoxic filter for low-strength rural wastewater treatment[J]. Journal of Cleaner Production,2018,196:1106-1115. doi: 10.1016/j.jclepro.2018.06.138 [6] 刘晓慧.我国农村生活污水排放现状初析[J]. 安徽农业科学,2015,43(23):234-235. doi: 10.3969/j.issn.0517-6611.2015.23.086LIU X H. Analysis on emission status of rural domestic sewage in China[J]. Journal of Anhui Agricultural Sciences,2015,43(23):234-235. doi: 10.3969/j.issn.0517-6611.2015.23.086 [7] MA Y H, ZHAI Y K, ZHENG X Y, et al. Rural domestic wastewater treatment in constructed ditch wetlands: effects of influent flow ratio distribution[J]. Journal of Cleaner Production,2019,225:350-358. doi: 10.1016/j.jclepro.2019.03.235 [8] 贾小宁, 何小娟, 韩凯旋,等.农村生活污水处理技术研究进展[J]. 水处理技术,2018,44(9):22-26.JIA X N, HE X J, HAN K X,et al. Research progress of sewage treatment technology in rural areas[J]. Technology of Water Treatment,2018,44(9):22-26. [9] 李莉.农村生活污水处理技术的应用及效果[J]. 化工管理,2020(29):64-65. doi: 10.3969/j.issn.1008-4800.2020.29.030 [10] 于淼, 马国胜.曝气生物滤池-后置反硝化处理农村低C/N污水[J]. 水处理技术,2018,44(9):32-35.YU M, MA G S. Study on low C/N wastewater treatment by aeration biological filter combined with post-denitrification in rural area[J]. Technology of Water Treatment,2018,44(9):32-35. [11] 游卫强, 胡斌, 陈浩.曝气生物滤池在污水处理厂运营中的常见问题分析及改造优化[J]. 给水排水,2020,56(增刊 1):422-425.YOU W Q, HU B, CHEN H. Research on the method of technical transformation of BAF in wastewater treatment plant[J]. Water & Wastewater Engineering,2020,56(Suppl 1):422-425. [12] 叶长兵, 周志明, 吕伟, 等.A2O污水处理工艺研究进展[J]. 中国给水排水,2014,30(15):135-138.YE C B, ZHOU Z M, LÜ W, et al. Research progress on A2O process for sewage treatment[J]. China Water & Wastewater,2014,30(15):135-138. [13] 李昀婷, 石玉敏, 王俭.农村生活污水一体化处理技术研究进展[J]. 环境工程技术学报,2021,11(3):499-506. doi: 10.12153/j.issn.1674-991X.20200146LI J T, SHI Y M, WANG J. Research progress on integrated treatment technologies of rural domestic sewage[J]. Journal of Environmental Engineering Technology,2021,11(3):499-506. doi: 10.12153/j.issn.1674-991X.20200146 [14] SANTOS A, MA W, JUDD S J. Membrane bioreactors: two decades of research and implementation[J]. Desalination,2011,273(1):148-154. [15] 杨春雪, 施春红, 张喜玲.膜生物反应器处理农村生活污水研究进展[J]. 水处理技术,2020,46(8):1-5.YANG C X, SHI C H, ZHANG X L. Research progress of membrane bioreactor in rural domestic sewage treatment[J]. Technology of Water Treatment,2020,46(8):1-5. [16] 裴亮, 刘慧明, 莫家玉, 等.一体化膜生物反应器处理农村生活污水试验研究[J]. 水处理技术,2012,38(2):104-106. doi: 10.3969/j.issn.1000-3770.2012.02.027PEI L, LIU H M, MO J Y, et al. Study on integrative menbrane bioreactor for treatment of rural domestic sewage[J]. Technology of Water Treatment,2012,38(2):104-106. doi: 10.3969/j.issn.1000-3770.2012.02.027 [17] 谢晴, 张静, 麻泽龙, 等.A2/O-MBR工艺在农村生活污水处理中的示范[J]. 环境工程,2016,34(7):38-41.XIE Q, ZHANG J, MA Z L. Demonstration of A2/O-MBR process in rural sewage treatment[J]. Environmental Engineering,2016,34(7):38-41. [18] 张文艺, 赵斌成, 毛林强, 等.MBBR-A2O/MBR处理农村生活污水动力学研究[J]. 安全与环境学报,2021,21(1):351-359.ZHANG W Y, ZHAO B C, MAO L Q, et al. Dynamics of the MBBR-A2O/MBR for treating the rural domestic sewage[J]. Journal of Safety and Environment,2021,21(1):351-359. [19] 付丽霞, 崔宁, 刘世虎, 等.水解酸化-接触氧化-MBR一体化装置处理农村生活污水[J]. 环境工程,2018,36(11):49-52.FU L X, CUI N, LIU S H, et al. Treatment performance of rural domestic wastewater by “Hydrolytic Acidification-biologica Contact Oxidation-MBR” integrated treatment equipment[J]. Environmental Engineering,2018,36(11):49-52. [20] 杨卫, 李孟.一体化装置处理农村生活污水工程设计与调试运行[J]. 中国给水排水,2015,31(20):93-96.YANG W, LI M. Design and trial operation of integrated device for rural domestic sewage treatment[J]. China Water & Wastewater,2015,31(20):93-96. [21] 唐舒雯, 纪婧, 王梦娴, 等.农村生活污水陶瓷膜-生物反应器处理工艺强化脱氮除磷研究[J]. 农业环境科学学报,2019,38(5):1121-1129. doi: 10.11654/jaes.2018-1166TANG S W, JI J, WANG M X, et al. Enhancement of nitrogen and phosphorus removal in ceramic membrane bioreactor for rural sewage treatment[J]. Journal of Agro-Environment Science,2019,38(5):1121-1129. doi: 10.11654/jaes.2018-1166 [22] 张燕燕, 程拥, 陈洪斌.MBR和BAF用于以家庭回用为目的的灰水净化研究[J]. 环境工程学报,2016,10(2):623-630. doi: 10.12030/j.cjee.20160218ZHANG Y Y, CHENG Y, CHEN H B. Research on gray water purification using MBR and BAF for domestic toilet flushing[J]. Chinese Journal of Environmental Engineering,2016,10(2):623-630. doi: 10.12030/j.cjee.20160218 [23] 张静, 唐贤春, 陈洪斌.倒置AAO-MBR处理黑水[J]. 环境工程学报,2016,10(7):3657-3663. doi: 10.12030/j.cjee.201507104ZHANG J, TANG X C, CHEN H B. Black water treatment with process of reversed AAO-MBR[J]. Chinese Journal of Environmental Engineering,2016,10(7):3657-3663. doi: 10.12030/j.cjee.201507104 [24] 黄正文, 谢泽宇. 一体式A/O-MBR反应装置处理农村生活污水研究[J]. 成都大学学报(自然科学版), 2017, 36(3): 328-332.HUANG Z W, XIE Z Y.Rural sewage treatment by integrated device of A/O-MBR[J]. Journal of Chengdu University (Natural Science Edition), 2017, 36(3): 328-332. [25] FOUNTOULAKIS M S, MARKAKIS N, PETOUSI I, et al. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing[J]. Science of the Total Environment,2016,551/552:706-711. doi: 10.1016/j.scitotenv.2016.02.057 [26] BANI-MELHEM K, AL-QODAH Z, AL-AHANNAG M, et al. On the performance of real grey water treatment using a submerged membrane bioreactor system[J]. Journal of Membrane Science,2015,476:40-49. doi: 10.1016/j.memsci.2014.11.010 [27] SANTASMASAS C, ROVIRO M, CLARENS F, et al. Grey water reclamation by decentralized MBR prototype[J]. Resources, Conservation & Recycling,2013,72:102-107. [28] BANI-MELHEM K, SMITH E. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system[J]. Chemical Engineering Journal,2012,198/199:201-210. doi: 10.1016/j.cej.2012.05.065 [29] LIBERMAN N,SHANDALOV S,FORGACS C,et al. Use of MBR to sustain active biomass for treatment of low organic load grey water[J]. Clean Technologies and Environmental Policy,2016,18(4):1219-1224. [30] PALMARIN M J, YOUNG S. Comparison of the treatment performance of a hybrid and conventional membrane bioreactor for greywater reclamation [J]. Journal of Water Process Engineering, 2019, (28): 54-59. 2022/01/06 09:40 [31] 张鹤怀, 石娟, 刘玉洲, 等.MBR膜污染机理及影响因素[J]. 绿色科技,2020(22):86-87. doi: 10.3969/j.issn.1674-9944.2020.22.026ZHANG H H, SHI J, LIU Y Z, et al. MBR menbrane pollution mechanism and influencing factors[J]. Journal of Green Science and Technology,2020(22):86-87. doi: 10.3969/j.issn.1674-9944.2020.22.026 [32] 罗玲, 袁野, 钟常明.MBR过程溶解性微生物产物对膜污染影响研究进展[J]. 应用化工,2021,50(4):1100-1106. doi: 10.3969/j.issn.1671-3206.2021.04.050LUO L, YUAN Y, ZHONG C M. Advances on the influence of soluble microbial products(SMP) on membrane fouling in the MBR process[J]. Applied Chemical Industry,2021,50(4):1100-1106. doi: 10.3969/j.issn.1671-3206.2021.04.050 [33] DING A, LIANG H, LI G B, et al. A low energy gravity-driven membrane bioreactor system for grey water treatment: permeability and removal performance of organics[J]. Journal of Membrane Science,2017,542:408-417. doi: 10.1016/j.memsci.2017.08.037 [34] KIM H Y, YEON K M, LEE C H, et al. Biofilm structure and extracellular polymeric substances in low and high dissolved oxygen membrane bioreactors[J]. Separation Science and Technology,2006,41(7):1213-1230. doi: 10.1080/01496390600632354 [35] 李亚峰, 苏雷, 刁可心, 等.进水负荷交替变化对好氧污泥颗粒化的促进[J]. 水处理技术,2018,44(1):96-101.LI Y F, SU L, DIAO K X, et al. Promoting effect of alternating loading on aerobic sludge granulation[J]. Technology of Water Treatment,2018,44(1):96-101. [36] 王璐. 聚磷菌和聚糖菌及其子群的代谢途径研究[D]. 长春: 吉林建筑大学, 2018. [37] YIN X F, LI X F, HUA Z Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research,2020,171:115452. doi: 10.1016/j.watres.2019.115452 [38] LIU F, HASHIM N A, LIU Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1/2):1-27. [39] ZHANG J W, WANG L, ZHANG G L, et al. Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process[J]. Journal of Colloid And Interface Science,2013,389(1):273-283. doi: 10.1016/j.jcis.2012.08.062 [40] ZHANG G L, ZHOU M, XU Z H, et al. Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment[J]. Journal of Colloid And Interface Science,2019,540:295-305. doi: 10.1016/j.jcis.2019.01.050 [41] NI L F, ZHU Y J, MA J, et al. Novel strategy for membrane biofouling control in MBR with CdS/MIL-101 modified PVDF membrane by in situ visible light irradiation[J]. Water Research,2021,188:116554. doi: 10.1016/j.watres.2020.116554 [42] ZHANG J, WANG Z W, LIU M X, et al. In-situ modification of PVDF membrane during phase-inversion process using carbon nanosphere sol as coagulation bath for enhancing anti-fouling ability[J]. Journal of Membrane Science,2017,526:272-280. doi: 10.1016/j.memsci.2016.12.044 [43] LI J C, LIU X Y, LU J Q, et al. Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles[J]. Journal of Colloid and Interface Science,2016,484:107-115. doi: 10.1016/j.jcis.2016.08.063 [44] 褚文玮, 赵伟伟, 赵倩倩.A2/O-MBR污水处理站MBR膜污染及其控制技术研究[J]. 天津化工,2020,34(5):29-33. doi: 10.3969/j.issn.1008-1267.2020.05.011 [45] MITRA S, DALTROPHE N C, GILRON J. A novel eductor-based MBR for the treatment of domestic wastewater[J]. Water Research,2016,100:65-79. doi: 10.1016/j.watres.2016.04.057 [46] ATANASOVA N, DALMAU M, COMAS J, et al. Optimized MBR for greywater reuse systems in hotel facilities[J]. Journal of Environmental Management,2017,193:503-511. doi: 10.1016/j.jenvman.2017.02.041 [47] HOCAOGLU S M, INSEL G, COKGOR E U, et al. COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions[J]. Journal of Chemical Technology & Biotechnology,2010,85(9):1241-1249. [48] 黄文佳, 赵国清, 张荣兵, 等.基于拉格朗日乘数法的MBR膜池鼓风机曝气系统优化控制[J]. 给水排水,2021,57(3):61-67.HUANG W J, ZHAO G Q, ZHANG R B, et al. Study on optimization control of MBR aeration system based on Lagrange multiplier method[J]. Water & Wastewater Engineering,2021,57(3):61-67. [49] 叶亮, 郭亚琼, 封峰, 等. 基于节能降耗的MBR工艺优化运行措施[J]. 中国给水排水, 2019, 35(4): 118-122.YE L, GUO Y Q, FENG F, et al. Study on optimizing operation for MBR progress based on energy saving and consumption reduction[J]. China Water & Wastewater, 2019, 35(4): 118-122.