Evaluation of provincial carbon emission efficiency based on partial order set
-
摘要:
为解决评价碳排放效率时面板数据的时间权重难以表示的问题,应用偏序集评价模型开展我国碳排放效率评价。该模型无需指标的具体权重值,只需知道权重顺序即可。通过收集我国30个省(区、市)2000—2017年的面板数据,求出历年碳排放效率,以时间逆序为权重顺序,进行碳排放效率评价。结果表明:我国东部碳排放效率较高,中部次之,西北部碳排放效率最差,影响各地区碳排放效率的因素不同,因此制定碳排放政策时要因地制宜;不同地区的碳排放效率呈空间聚集的趋势,一个地区的碳排放政策不仅会影响本地区的碳排放效果,还会影响相近地区的碳排放效果,因此要加强各地区间的碳减排合作。
Abstract:To address the problematic time weights of panel data in the evaluation of carbon emission efficiency, a partial-order set evaluation model was used to evaluate the carbon emission efficiency of China. In this model, it was not necessary to know the specific weight values of the indicators, but only the weight order was needed. By collecting the panel data of 30 Chinese provinces (autonomous regions and municipalities) from 2000 to 2017, calculating each year′s carbon emission efficiency, and sequencing the weight values in time reverse order, the carbon emission efficiency was evaluated. The results showed that the carbon emission efficiency was the highest in East China, followed by the Central China, and the worst in Northwest. The factors affecting the carbon emission efficiency in each region were different, which required that specific carbon emission policies should be developed according to local conditions. The carbon emission efficiency of each region tended to be aggregated, and the local carbon emission policy would not only affect the carbon emission effect of the region, but also affect the carbon emission of the adjacent areas, so, it was necessary to strengthen the cooperation of carbon emission reduction among all the regions.
-
表 1 碳排放效率评价指标
Table 1. Evaluation indexes of carbon emission efficiency
一级指标 二级指标 三级指标 碳排放效率 产出指标 碳排放量 GDP 投入指标 劳动力 资本存量 能源消费 表 2 部分地区2000—2017年碳排放效率
Table 2. Carbon emission efficiency from 2000 to 2017 in some areas
决策单元 2017年 2016年 2015年 2014年 2013年 2012年 2011年 2010年 2009年 北京 1 739 1 637 1 528 1 402 1 412 1 304 1 618 1 412 1 239 天津 931 889 905 954 961 854 906 986 1 058 河北 1 000 923 943 974 1 000 952 768 755 752 上海 1 250 1 259 1 398 1 390 1 380 1 248 1 412 1 399 1 411 陕西 771 764 807 856 882 873 728 718 706 甘肃 799 753 782 854 903 885 599 599 569 青海 781 779 787 812 821 727 583 571 528 宁夏 590 534 587 507 533 588 512 504 499 新疆 855 884 925 1 000 1 000 1 000 679 679 622 决策单元 2008年 2007年 2006年 2005年 2004年 2003年 2002年 2001年 2000年 北京 1 151 1 139 1 133 1 031 1 028 1 018 1 016 1 012 1 010 天津 1 015 1 012 978 964 957 951 945 933 913 河北 772 805 810 829 843 828 825 1 177 868 上海 1 391 1 377 1 364 1 232 1 363 1 420 1 418 1 378 1 385 陕西 697 689 694 677 621 623 571 545 546 甘肃 590 615 617 599 563 565 530 513 543 青海 516 496 482 489 496 589 450 434 455 宁夏 485 856 472 477 429 449 427 419 426 新疆 664 644 655 653 633 647 552 554 575 注:为了计算方便,将计算数据扩大了1000倍,因为只比较不同地区碳排放效率的相对大小,所以不影响最后结果。 表 3 部分地区2000—2017年Hasse矩阵
Table 3. Hasse matrix from 2000 to 2017 in some areas
决策单元 北京 天津 河北 上海 陕西 甘肃 青海 宁夏 新疆 北京 0 0 0 0 0 0 0 0 0 天津 0 0 0 0 0 0 0 0 0 河北 0 0 0 0 0 0 0 0 1 上海 0 0 0 0 0 0 0 0 0 云南 0 0 0 0 0 0 0 0 0 陕西 0 0 0 0 0 0 0 0 0 甘肃 0 0 0 0 0 0 0 1 0 青海 0 0 0 0 0 0 0 1 0 宁夏 0 0 0 0 0 0 0 0 0 新疆 0 0 0 0 1 1 1 0 0 表 4 部分地区2000—2017年秩均值
Table 4. Rank mean values from 2000 to 2017 in some areas
决策单元 秩均值 决策单元 秩均值 上海 0.97 湖北 0.41 北京 0.97 四川 0.40 广东 0.90 重庆 0.37 江苏 0.88 江西 0.35 海南 0.88 陕西 0.29 天津 0.86 甘肃 0.27 山东 0.86 河南 0.25 福建 0.84 云南 0.22 河北 0.76 黑龙江 0.21 安徽 0.70 辽宁 0.20 广西 0.65 吉林 0.14 浙江 0.64 贵州 0.11 新疆 0.55 青海 0.08 湖南 0.54 内蒙古 0.03 山西 0.43 宁夏 0.03 -
[1] ZHOU P, ANG B W. Linear programming models for measuring economy-wide energy efficiency performance[J]. Energy Policy,2008,36(8):2911-2916. doi: 10.1016/j.enpol.2008.03.041 [2] PAN X F, PAN X Y, LI C Y, et al. Effects of China's environmental policy on carbon emission efficiency[J]. International Journal of Climate Change Strategies and Management,2019,11(3):326-340. doi: 10.1108/IJCCSM-12-2017-0206 [3] ZHOU P, ANG B W, HAN J Y. Total factor carbon emission performance: a Malmquist index analysis[J]. Energy Economics,2010,32(1):194-201. doi: 10.1016/j.eneco.2009.10.003 [4] DONG F, LONG R Y, BIAN Z F, et al. Applying a Ruggiero three-stage super-efficiency DEA model to gauge regional carbon emission efficiency: evidence from China[J]. Natural Hazards,2017,87(3):1453-1468. doi: 10.1007/s11069-017-2826-2 [5] 李涛, 傅强.中国省际碳排放效率研究[J]. 统计研究,2011,28(7):62-71. doi: 10.3969/j.issn.1002-4565.2011.07.008LI T, FU Q. Study on China's carbon dioxide emissions efficiency[J]. Statistical Research,2011,28(7):62-71. doi: 10.3969/j.issn.1002-4565.2011.07.008 [6] 刘亦文, 胡宗义.中国碳排放效率区域差异性研究: 基于三阶段DEA模型和超效率DEA模型的分析[J]. 山西财经大学学报,2015,37(2):23-34.LIU Y W, HU Z Y. Research on regional difference about carbon emission efficiency in China: based on three stage DEA model and super efficiency DEA model[J]. Journal of Shanxi University of Finance and Economics,2015,37(2):23-34. [7] 李艳红.山东省碳减排系统仿真及政策优化研究[J]. 环境工程技术学报,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063LI Y H. System simulation and policy optimization of carbon emission reduction in Shandong Province[J]. Journal of Environmental Engineering Technology,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063 [8] 孙少勤, 郭琴琴, 邵青.基于超效率DEA模型的中国省际碳排放效率研究[J]. 阅江学刊,2014,6(6):41-51.SUN S Q, GUO Q Q, SHAO Q. Study on provincial carbon emission's efficiency in China based on super-efficiency DEA model[J]. Yuejiang Academic Journal,2014,6(6):41-51. [9] 王缃韵.我国省际碳排放效率及其动态特征分析[J]. 现代经济信息,2016(4):17-18. [10] 宋雅静, 万安位, 黄珂婧.基于超效率模型的中国省际碳排放效率研究[J]. 北方经贸,2020(7):30-32. [11] 岳瑞锋, 朱永杰.1990—2007年中国能源碳排放的省域聚类分析[J]. 技术经济,2010,29(3):40-45. doi: 10.3969/j.issn.1002-980X.2010.03.009YUE R F, ZHU Y J. Provincial cluster analysis on China's energy carbon emission from 1990 to 2007[J]. Technology Economics,2010,29(3):40-45. doi: 10.3969/j.issn.1002-980X.2010.03.009 [12] 马大来, 陈仲常, 王玲.中国省际碳排放效率的空间计量[J]. 中国人口·资源与环境,2015,25(1):67-77. doi: 10.3969/j.issn.1002-2104.2015.01.010MA D L, CHEN Z C, WANG L. Spatial econometrics research on inter-provincial carbon emissions efficiency in China[J]. China Population, Resources and Environment,2015,25(1):67-77. doi: 10.3969/j.issn.1002-2104.2015.01.010 [13] 王莉, 白彦.中国工业能源效率的空间交互效应识别与分析[J]. 西南民族大学学报(人文社会科学版),2021,42(6):152-161. [14] 李铭泓, 黄羿, 朱伟俊, 等.中国交通运输业碳排放全要素生产率研究: 基于Global Malmquist-Luenberger指数[J]. 科技管理研究,2021,41(9):203-211. doi: 10.3969/j.issn.1000-7695.2021.09.027LI M H, HUANG Y, ZHU W J, et al. Research on the carbon emission total factor productivity of the transportation industry in China based on the global Malmquist-Luenberger index[J]. Science and Technology Management Research,2021,41(9):203-211. doi: 10.3969/j.issn.1000-7695.2021.09.027 [15] 张德钢.市场分割对碳排放效率的影响研究: 基于固定效应面板随机前沿模型[J]. 软科学,2018,32(9):94-97.ZHANG D G. Study on the impact of market segmentation on carbon emission efficiency: based on fixed-effect panel stochastic frontier models[J]. Soft Science,2018,32(9):94-97. [16] 金英君, 刘晓峰, 王义源.政府调控碳排放路径研究: 基于金融效率的视角[J]. 中国软科学,2021(5):135-144. doi: 10.3969/j.issn.1002-9753.2021.05.013JIN Y J, LIU X F, WANG Y Y. Government research on the path to regulating carbon emissions: based on a financial efficiency perspective[J]. China Soft Science,2021(5):135-144. doi: 10.3969/j.issn.1002-9753.2021.05.013 [17] 岳立柱, 张志杰, 闫艳.蕴含权重的偏序集多准则决策法[J]. 运筹与管理,2018,27(2):26-31.YUE L Z, ZHANG Z J, YAN Y. Multi criteria decision making method of poset with weight[J]. Operations Research and Management Science,2018,27(2):26-31. [18] 范懿.一个有关哈斯图的解析方法[J]. 上海第二工业大学学报,2003,20(1):17-22. doi: 10.3969/j.issn.1001-4543.2003.01.003FAN Y. An analytic methord about Hasse Chart[J]. Journal of Shanghai Second Polytechnic University,2003,20(1):17-22. doi: 10.3969/j.issn.1001-4543.2003.01.003 [19] 黄亮, 王会敏, 岳立柱, 等.基于偏序集的采空区塌陷危险性评价研究[J]. 中国安全生产科学技术,2019,15(4):134-140.HUANG L, WANG H M, YUE L Z, et al. Study on risk assessment of goaf collapse based on partial order set[J]. Journal of Safety Science and Technology,2019,15(4):134-140. [20] 李世豪. 基于随机前沿模型的京津冀地区碳排放效率研究[D]. 北京: 华北电力大学(北京), 2020. [21] LI H Z, GUO S, CUI L Y, et al. Review of renewable energy industry in Beijing: development status, obstacles and proposals[J]. Renewable and Sustainable Energy Reviews,2015,43:711-725. doi: 10.1016/j.rser.2014.11.074 [22] XIONG S Q, MA X M. Regional carbon efficiency in China: a super-SBM model with undesirable outputs[J]. DEStech Transactions on Environment, Energy and Earth Sciences, 2017. doi: 10.12783/dteees/ese2017/14347. [23] 李健, 马晓芳, 苑清敏.区域碳排放效率评价及影响因素分析[J]. 环境科学学报,2019,39(12):4293-4300.LI J, MA X F, YUAN Q M. Evaluation and influencing factors' analysis of regional carbon emission efficiency[J]. Acta Scientiae Circumstantiae,2019,39(12):4293-4300. [24] 张翱祥, 邓荣荣.中部六省碳排放效率与产业结构优化的耦合协调度及影响因素分析[J]. 生态经济,2021,37(3):31-37.ZHANG A X, DENG R R. Coupling coordination degree of carbon emission efficiency and industrial structure optimization in six provinces of central China and research on its influencing factors[J]. Ecological Economy,2021,37(3):31-37. [25] 姜博, 马胜利.区域经济增长与碳排放影响因素研究: 以东北三省为例[J]. 企业经济,2020,39(11):122-131. [26] 马远, 刘真真.黄河流域土地利用碳排放的时空演变及影响因素研究[J]. 生态经济,2021,37(7):35-43.MA Y, LIU Z Z. Study on the spatial-temporal evolution and influencing factors of land use carbon emissions in the Yellow River Basin[J]. Ecological Economy,2021,37(7):35-43. ⊕