Study on photocatalytic functional material and verification of its application for improving water environment quality of lake and reservoir
-
摘要: 为验证石墨烯基氧化钛光催化功能材料在实际工况条件下的适用性及其对污染水体的净化效果,分别选择云南省大理州西湖(ST-1)及浙江省舟山市嵊泗县的长弄塘水库(ST-2)进行为期105~107 d的野外原位围隔试验验证研究。结果表明:光催化功能材料与土著生物耦合(光催化耦合生态净化技术)对2种类型水体中污染物降解具有较好的效果,试验期间ST-1和ST-2水体中的氨氮、总磷浓度和COD分别下降71.8%、45.5%和27.3%以及3.8%、62.1%和33.3%;该技术实施后水体溶解氧浓度较稳定,分别为6.05~9.50和6.60~10.60 mg/L,水体透明度分别提升109.0%和185.7%;另外,该技术对藻类具有抑制作用,ST-1、ST-2试验组与对照组相比,藻类总生物量分别下降了30.3%和64.6%。Abstract: In order to verify the applicability of the photocatalytic functional materials, graphene based titanium oxides, under actual working conditions and their purification effect on polluted water, two sites were selected respectively in Xihu Reservoir of Dali Bai Autonomous Prefecture, Yunnan Province (ST-1) and Changnongtang Reservoir of Shengsi County, Zhoushan City, Zhejiang Province (ST-2), to carry out field in situ enclosure tests for 105-107 days. The results showed that the use of photocatalytic functional materials coupled with indigenous organisms (or photocatalysis coupling ecological purification technology) had a good effect on reducing pollutants in two different types of water. During the experiment, the concentrations of NH3, TP and COD decreased by 71.8%, 45.5% and 27.3% together with 3.8%, 62.1% and 33.3%, at ST-1 and ST-2 respectively. After the implementation of the technology, the concentration of dissolved oxygen in the water was relatively stable, which were 6.05-9.50 and 6.60-10.60, respectively. The transparency of water body was improved by 109.0% and 185.7%, respectively. In addition, the technology had inhibitory effect on algae. Compared with the control group, the total biomass of algae in ST-1 and ST-2 decreased by 30.3% and 64.6%, respectively.
-
表 1 光催化功能材料纤维网膜技术参数
Table 1. Technical parameters of photocatalytic functional fiber membrane
项目 参数 项目 参数 基材材质 聚丙烯纤维 适用光照强度/lx ≥5 000 基材类型 1400D160F 适用流速/(cm/s) ≤0.5 RhB降解速率1)/〔mg/(h·m2)〕 ≥120 适用温度/℃ 5~40 TP处理量1)/(mg/m2) ≥10 适用水深/m ≥0.1 ORP提升率1)/% ≥60 适用pH 6~9 网孔密度/(个/cm2) 9 网膜厚度/cm 0.2~0.3 1)为实验室数据。 表 2 试验水体概况
Table 2. Basic situation of two test water bodies
项目 ST-1 ST-2 所属地区 云南省大理州 浙江省舟山市 平均海拔/m 1 970 45 类型 高原湖泊 岛屿水库 气候类型 亚热带季风气候 亚热带海洋性季风气候 历年平均气温1)/℃ −0.4(不结冰)~25.3 3.7~29.9 历年平均降水量1)/mm 714.2 1 105.9 历年平均日照时长1)/h 2 250.2 2 012.3 历年主导风向1) 微风、西南风 东南风 水体面积/m2 11 500 15 000 水体最大水深/m 6 20 治理前水体水质2) 劣Ⅴ类 Ⅳ类 1)1981—2010年;2)GB 3838—2002《地表水环境质量标准》。 表 3 试验前水体水质指标数据及分类
Table 3. Water quality index data and classification before test
水体 DO浓度/(mg/L) COD/(mg/L) 氨氮浓度/(mg/L) TP浓度/(mg/L) 水体透明度/cm 综合水质类别 ST-1 6.20 (Ⅱ) 22.0 (Ⅳ) 0.390 (Ⅱ) 0.110 (Ⅴ) 66 Ⅴ ST-2 10.60 (Ⅰ) 21.9 (Ⅳ) 0.158 (Ⅱ) 0.029 (Ⅲ) 70 Ⅳ 表 5 试验后水体水质指标均值及类别
Table 5. Mean value of water quality indexes and classification after test
水体 DO浓度/(mg/L) COD/(mg/L) 氨氮浓度/(mg/L) TP浓度/(mg/L) 水体透明度/cm 水质综合类别 ST-1 10.60 (Ⅰ) 21.9 (Ⅳ) 0.158 (Ⅱ) 0.029 (Ⅲ) 70 Ⅳ ST-2 8.38 (Ⅰ) 14.6 (Ⅱ) 0.152 (Ⅱ) 0.011 (Ⅱ) 200 Ⅱ -
[1] 黄文钰, 吴延根, 舒金华.中国主要湖泊水库的水环境问题与防治建议[J]. 湖泊科学,1998,10(3):83-90. doi: 10.18307/1998.0315HUANG W Y, WU Y G, SHU J H. Hydrographical environmental problems and countermeasures of main lakes and reservoirs in China[J]. Journal of Lake Sciences,1998,10(3):83-90. doi: 10.18307/1998.0315 [2] 裘知, 王睿, 李思亮, 等. 中国湖泊污染现状与治理情况分析[C]//湖泊湿地与绿色发展. 第五届中国湖泊论坛论文集. 长春:吉林人民出版社, 2015: 215-219. [3] 王海珍, 陈德辉, 王全喜, 等.水生植被对富营养化湖泊生态恢复的作用[J]. 自然杂志,2002,24(1):33-36. doi: 10.3969/j.issn.0253-9608.2002.01.006WANG H Z, CHEN D H, WANG Q X, et al. The effect of aquatic vegetation on ecological restoration of eutrophication lake[J]. Nature Magazine,2002,24(1):33-36. doi: 10.3969/j.issn.0253-9608.2002.01.006 [4] 秦伯强.太湖生态与环境若干问题的研究进展及其展望[J]. 湖泊科学,2009,21(4):445-455. doi: 10.3321/j.issn:1003-5427.2009.04.001QIN B Q. Progress and prospect on the eco-environmental research of Lake Taihu[J]. Journal of Lake Sciences,2009,21(4):445-455. doi: 10.3321/j.issn:1003-5427.2009.04.001 [5] 王民浩, 孔德安. 城市水环境综合治理理论与实践: 六大技术系统[M]. 北京: 中国环境出版集团, 2019: 414. [6] FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports,2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001 [7] FUJISHIMA A, ZHANG X T, TRYK D A. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup[J]. International Journal of Hydrogen Energy,2007,32(14):2664-2672. doi: 10.1016/j.ijhydene.2006.09.009 [8] 马荧. 石墨烯/二氧化钛基多元复合膜光催化降解酚类污染物性能与机理研究[D]. 长春: 东北师范大学, 2020. [9] ASILTÜRK M, SAYLLKAN F, ARPAÇ E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,203(1):64-71. doi: 10.1016/j.jphotochem.2008.12.021 [10] 张国庆. 二氧化钛半导体光催化剂的制备、改性及其光催化性能研究[D]. 长春: 吉林大学, 2020. [11] 刘义. 氮掺杂TiO2和TiO2/SiO2的制备及光催化性能的研究[D]. 广州: 华南理工大学, 2010. [12] 展海银, 周启星.环境中四环素类抗生素污染处理技术研究进展[J]. 环境工程技术学报,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154ZHAN H Y, ZHOU Q X. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Journal of Environmental Engineering Technology,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154 [13] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today,1999,53(1):51-59. doi: 10.1016/S0920-5861(99)00102-9 [14] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96. doi: 10.1021/cr00033a004 [15] NOSAKA Y, DAIMON T, NOSAKA A Y, et al. Singlet oxygen formation in photocatalytic TiO2 aqueous suspension[J]. Physical Chemistry Chemical Physics,2004,6(11):2917-2918. doi: 10.1039/b405084c [16] DAIMON T, NOSAKA Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence[J]. Journal of Physical Chemistry C,2007,111(11):4420-4424. doi: 10.1021/jp070028y [17] 孙凌凌, 胡心科, 孙雪, 等.负载纳米TiO2的弥散光纤降解高浓盐水中COD的研究[J]. 应用化工,2020,49(8):1992-1994. doi: 10.3969/j.issn.1671-3206.2020.08.028SUN L L, HU X K, SUN X, et al. Study on the degradation of COD in high concentration brine by diffuse optical fiber loaded with nanometer TiO2[J]. Applied Chemical Industry,2020,49(8):1992-1994. doi: 10.3969/j.issn.1671-3206.2020.08.028 [18] 杨春宇, 汪统岳, 陈霆, 等.基于光气候区的日照时数特征及变化规律[J]. 同济大学学报(自然科学版),2017,45(8):1123-1130. doi: 10.11908/j.issn.0253-374x.2017.08.004YANG C Y, WANG T Y, CHEN T, et al. Variation characteristics of the sunshine duration in all Chinese light climate zones[J]. Journal of Tongji University (Natural Science),2017,45(8):1123-1130. doi: 10.11908/j.issn.0253-374x.2017.08.004 [19] YAMAZOE S, HITOMI Y, SHISHIDO T, et al. Kinetic study of photo-oxidation of NH3 over TiO2[J]. Applied Catalysis B:Environmental,2008,82(1/2):67-76. [20] 白润英, 郝俊峰, 刘建明, 等.光催化转化并回收水中农药有机磷[J]. 中国环境科学,2020,40(3):1132-1138. doi: 10.3969/j.issn.1000-6923.2020.03.024BAI R Y, HAO J F, LIU J M, et al. Photocatalytic conversion and recycle of organic phosphorus within pesticides form aqueous solution[J]. China Environmental Science,2020,40(3):1132-1138. doi: 10.3969/j.issn.1000-6923.2020.03.024 [21] DELASA H, BENITO SERRANO ROSALES. 光催化技术[M]. 北京: 科学出版社, 2010. [22] OFIR E, OREN Y, ADIN A. Comparing pretreatment by iron of electro-flocculation and chemical flocculation[J]. Desalination,2007,204(1/2/3):87-93. [23] 任久长, 周红, 孙亦彤.滇池光照强度的垂直分布与沉水植物的光补偿深度[J]. 北京大学学报(自然科学版),1997,33(2):76-79.REN J C, ZHOU H, SUN Y T. Vertical distribution of light intensity and light compensation depth of submerged macrophyte in Lake Dianchi[J]. Acta Scicentiarum Naturalum Universitis Pekinesis,1997,33(2):76-79. ⊗