Simulation study on the characteristics of base ion loss in Taihu Lake Watershed under the background of acid deposition
-
摘要:
太湖流域是我国酸沉降较严重的区域之一,酸沉降对流域碱基离子流失产生了显著影响。通过室内模拟试验,研究了流域内代表性碳酸盐岩及其风化产物和流域分布广泛的沙壤土在不同pH模拟酸溶液作用下碱基离子的释放特征。结果表明:1)碳酸盐岩中碱基离子释放量与酸溶液pH和粒径均呈显著负相关(P<0.01)。在10 d试验期内,Ca2+释放量最小值为0.26 g/kg,最大值达14.30 g/kg,且比K+、Na+和Mg2+释放量高1个数量级。2)碳酸盐岩风化产物与沙壤土中碱基离子对模拟酸溶液的敏感性为Ca2+>Mg2+>K+。其释放量不仅与模拟酸溶液pH有关,还取决于介质本身特征(本身离子总量、成土母质环境及交换态离子量)。3)太湖流域不同介质对模拟酸溶液的缓冲能力存在显著差异,表现为碳酸盐岩>白云岩风化产物>石灰岩风化产物>沙壤土。分析认为,大量的碳酸盐与质子迅速发生的中和作用是碳酸盐岩及其风化产物具有较强缓冲能力的关键因素。
Abstract:Taihu Lake Watershed is one of the areas with acid deposition in China, and acid deposition has a significant effect on the loss of base ions in the basin. The release characteristics of base ions from the representative carbonate rocks and their weathered products as well as the widely distributed sandy loam soil in the watershed under the action of simulated acid solutions with different pH were studied by laboratory simulation tests. The results indicated that: 1)The release of base ions in carbonate rocks was significantly negatively associated with pH and the particle size of acid solution (P<0.01). During the 10 days test period, the minimum release of Ca2+ was 0.26 g/kg, and the maximum release was 14.30 g/kg, which was one order of magnitude higher than K+, Na+ and Mg2+. 2)The sensitivity of base ions in the weathered products of carbonate rocks and sandy loam soil to simulated acid solution was in the order of Ca2+>Mg2+>K+. The amount of base ions released was not only related to the pH of simulated acid solution, but also depended on the characteristics of the medium, including its total amount of ions, parent material environment and amount of exchangeable cations. 3)The buffering capacity of different media for simulated acid solution in Taihu Lake Watershed was significant distinction, that was, carbonate rocks>the weathered products of dolomite>the weathered products of limestone>sandy loam soil. It was considered that a large number of carbonates would neutralize protons rapidly, which was the key factor for carbonate rocks and their weathered products to have strong buffering capacity.
-
Key words:
- acid deposition /
- carbonate rock /
- weathered products /
- base ion /
- buffering capacity
-
表 1 模拟试验用土的基本理化性质
Table 1. Basic physical and chemical properties of rock soil for simulation test
试验材料 pH 电导率/(µS/cm) 交换态/(g/kg) 酸提取态/(g/kg) 总量/(g/kg) K+ Na+ Ca2+ Mg2+ Ca2+ Mg2+ K+ Na+ Ca2+ Mg2+ 白云岩风化产物 7.59 211.40 0.14 0.02 4.11 0.26 3.28 0.11 17.30 4.72 12.18 9.06 石灰岩风化产物 7.34 138.40 0.19 0.02 3.55 0.12 1.10 0.07 18.18 2.10 11.86 7.03 沙壤土 6.80 120.80 0.10 0.04 1.59 0.31 0.32 0.08 14.23 13.76 3.35 6.02 表 2 模拟试验用原岩的基本理化性质
Table 2. Basic physical and chemical properties of original rock in simulation test
岩石类型 粒径/mm K+总量/(g/kg) Na+总量/(g/kg) Ca2+总量/(g/kg) Mg2+总量/(g/kg) 白云岩 细(0.15~0.36) 5.75 4.01 74.30 7.25 中(0.36~2.00) 5.11 3.94 76.68 7.30 粗(2.00~5.00) 5.34 4.60 77.05 7.94 石灰岩 细(0.15~0.36) 0.25 0.17 269.38 0.63 中(0.36~2.00) 0.26 0.15 267.38 0.60 粗(2.00~5.00) 0.25 0.17 255.56 0.69 表 3 模拟酸雨淋溶下碳酸盐岩风化产物和沙壤土中碱基离子释放特征
Table 3. Characteristics of base ions release from weathering products of carbonate rocks and sandy loam soil under simulated acid rain leaching
试验材料 pH K+ Na+ Ca2+ Mg2+ 碱基离子总量 释放量/(g/kg) 释放率/% 释放量/(g/kg) 释放率/% 释放量/(g/kg) 释放率/% 释放量/(g/kg) 释放率/% 释放量/(g/kg) 释放率/% 白云岩风化产物 2.0 0.16 0.9 0.05 1.1 8.17 67.0 0.51 5.6 8.89 20.6 石灰岩风化产物 2.0 0.20 1.1 0.04 1.9 5.63 47.5 0.21 3.0 6.08 15.5 沙壤土 2.0 0.13 0.9 0.05 0.4 2.00 59.7 0.43 7.1 2.61 7.0 注:释放率=(各离子释放量/原土壤中各离子总量)×100%。 -
[1] YU T, XU Q J, HE C D, et al. Long-term trends in acid neutralizing capacity under increasing acidic deposition: a special example of eutrophic Taihu Lake, China[J]. Environmental Science & Technology,2016,50(23):12660-12668. [2] TABATABAI M A, OLSON R A. Effect of acid rain on soils[J]. Critical Reviews in Environmental Control,1985,15(1):65-110. doi: 10.1080/10643388509381727 [3] JENKINS A. End of the acid reign[J]. Nature,1999,401(6753):537-538. doi: 10.1038/44032 [4] LAWRENCE G B, HAZLETT P W, FERNANDEZ I J, et al. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern US and eastern Canada[J]. Environmental Science & Technology,2015,49(22):13103-13111. [5] LARSSEN T, LYDERSEN E, TANG D G, et al. Acid rain in China[J]. Environmental Science & Technology,2006,40(2):418-425. [6] 赵健, 代丹, 王瑞, 等.太湖流域降雨和湖水酸根阴离子长期变化及其环境意义[J]. 湖泊科学,2019,31(1):88-98. doi: 10.18307/2019.0109ZHAO J, DAI D, WANG R, et al. Long-term trends of acid anion in the rain water in Lake Taihu Watershed and the lake water, and its environmental implications[J]. Journal of Lake Sciences,2019,31(1):88-98. doi: 10.18307/2019.0109 [7] GUICHARNAUD R, PATON G I. An evaluation of acid deposition on cation leaching and weathering rates of an Andosol and a Cambisol[J]. Journal of Geochemical Exploration,2006,88(1/2/3):279-283. [8] WEYHENMEYER G A, HARTMANN J, HESSEN D O, et al. Widespread diminishing anthropogenic effects on calcium in freshwaters[J]. Scientific Reports,2019,9:10450. doi: 10.1038/s41598-019-46838-w [9] ABE S S, HARADA T, OKUMURA H, et al. Comparing rates of rock weathering and soil formation between two temperate forest watersheds differing in parent rock and vegetation type[J]. Japan Agricultural Research Quarterly:JARQ,2019,53(3):169-179. doi: 10.6090/jarq.53.169 [10] CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin Rivers: anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta,2008,72(17):4254-4277. doi: 10.1016/j.gca.2008.06.013 [11] 冯志刚, 刘炫志, 韩世礼, 等.碳酸盐岩风化过程中高场强元素的地球化学行为研究: 来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶,2018,37(3):315-329.FENG Z G, LIU X Z, HAN S L, et al. Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: evidence from leaching experiment on carbonate rock[J]. Carsologica Sinica,2018,37(3):315-329. [12] 黄奇波, 覃小群, 程瑞瑞, 等.硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶,2019,38(2):149-156.HUANG Q B, QIN X Q, CHENG R R, et al. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. Carsologica Sinica,2019,38(2):149-156. [13] 刘俐, 周友亚, 宋存义, 等.模拟酸雨淋溶下红壤中盐基离子释放及缓冲机制研究[J]. 环境科学研究,2008,21(2):49-55.LIU L, ZHOU Y Y, SONG C Y, et al. Release of basic cations in red soil under simulated acid rain and buffering mechanism[J]. Research of Environmental Sciences,2008,21(2):49-55. [14] ZHANG J E, OUYANG Y, LING D J. Impacts of simulated acid rain on cation leaching from the latosol in South China[J]. Chemosphere,2007,67(11):2131-2137. doi: 10.1016/j.chemosphere.2006.12.095 [15] DAI D, YU T, DENG Y X, et al. Acid deposition induced base cation loss and different responses of soils and sediments in Taihu Lake Watershed, China[J]. Chemosphere,2019,226:149-158. doi: 10.1016/j.chemosphere.2019.03.136 [16] YU T, ZHANG Y, WU F C, et al. Six-decade change in water chemistry of large freshwater lake Taihu, China[J]. Environmental Science & Technology,2013,47(16):9093-9101. [17] 赵艳民, 曹伟, 张雷, 等.多维度水质安全评价方法探讨: 以太湖为例[J]. 环境工程技术学报,2018,8(6):595-601. doi: 10.3969/j.issn.1674-991X.2018.06.079ZHAO Y M, CAO W, ZHANG L, et al. Study of multi-dimensional water quality safety evaluation method: taking Taihu Lake as an example[J]. Journal of Environmental Engineering Technology,2018,8(6):595-601. doi: 10.3969/j.issn.1674-991X.2018.06.079 [18] 杨凡, 余辉, 李莉.大气湿沉降对太湖水质及叶绿素a的影响[J]. 湖北农业科学,2014,53(1):28-32. doi: 10.3969/j.issn.0439-8114.2014.01.009YANG F, YU H, LI L. Effect of wet deposition on water quality and concentration of chlorophyll a in Lake Tai[J]. Hubei Agricultural Sciences,2014,53(1):28-32. doi: 10.3969/j.issn.0439-8114.2014.01.009 [19] 于天仁陈志诚. 土壤发生中的化学过程[M]. 北京: 科学出版社, 1990. [20] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844-851. doi: 10.1021/ac50043a017 [21] 冯志刚, 马强, 李石朋, 等.碳酸盐岩风化壳岩-土界面风化作用机制: 对岩粉层淋溶模拟的初步研究[J]. 地质学报,2013,87(1):119-132. doi: 10.3969/j.issn.0001-5717.2013.01.012FENG Z G, MA Q, LI S P, et al. Weathering mechanism of rock-soil interface in weathering profile derived from carbonate rocks: preliminary study of leaching simulation in rock powder layer[J]. Acta Geologica Sinica,2013,87(1):119-132. doi: 10.3969/j.issn.0001-5717.2013.01.012 [22] 李景阳, 梁风, 朱立军, 等.碳酸盐岩红土风化剖面的淋滤试验研究: 以贵州遵义和平坝剖面为例[J]. 中国岩溶,2001,20(3):167-173. doi: 10.3969/j.issn.1001-4810.2001.03.001LI J Y, LIANG F, ZHU L J, et al. Leaching experiment on residual weathering crust of carbonate rock: a case study of Pingba and Zunyi profiles of Guizhou[J]. Carsologica Sinica,2001,20(3):167-173. doi: 10.3969/j.issn.1001-4810.2001.03.001 [23] 任标, 刘琦, 白友恩. 石漠化地区碳酸盐岩风化特性的淋溶实验研究[C]//2019年全国工程地质学术年会论文集. 北京: 中国地质学会, 2019: 440-447. [24] 万国江. 碳酸盐岩风化淋溶的模拟实验[C]//碳酸盐岩与环境(卷一). 北京: 地震出版社, 1995: 58-61. [25] 廖柏寒, 戴昭华.土壤对酸沉降的缓冲能力与土壤矿物的风化特征[J]. 环境科学学报,1991,11(4):425-431.LIAO B H, DAI Z H. Soil buffering capacity to acid precipitation and weathering characteristics of soil minerals[J]. Acta Scientiae Circumstantiae,1991,11(4):425-431. [26] 刘炜, 周运超, 张春来.石灰土盐基离子迁移对模拟酸雨的响应[J]. 中国岩溶,2018,37(3):336-342.LIU W, ZHOU Y C, ZHANG C L. Response of base cations migration of lime soil to simulated acid rain[J]. Carsologica Sinica,2018,37(3):336-342. [27] KOPÁČEK J, KAŇA J, BIČÁROVÁ S, et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments[J]. Environmental Science & Technology,2017,51(1):159-166. [28] HUANG Q B, QIN X Q, LIU P Y, et al. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China[J]. Journal of Contaminant Hydrology,2017,203:18-27. ◇ doi: 10.1016/j.jconhyd.2017.05.006