留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AHP-FCE模型的制药行业清洁生产技术评价

李娟 沈亮 王良杰 黄晶琳 钱锋 曾萍 王辉锋 王晨昊

李娟,沈亮,王良杰,等.基于AHP-FCE模型的制药行业清洁生产技术评价[J].环境工程技术学报,2022,12(5):1541-1547 doi: 10.12153/j.issn.1674-991X.20210218
引用本文: 李娟,沈亮,王良杰,等.基于AHP-FCE模型的制药行业清洁生产技术评价[J].环境工程技术学报,2022,12(5):1541-1547 doi: 10.12153/j.issn.1674-991X.20210218
LI J,SHEN L,WANG L J,et al.Evaluation of cleaner production technologies in pharmaceutical industry based on AHP-FCE model[J].Journal of Environmental Engineering Technology,2022,12(5):1541-1547 doi: 10.12153/j.issn.1674-991X.20210218
Citation: LI J,SHEN L,WANG L J,et al.Evaluation of cleaner production technologies in pharmaceutical industry based on AHP-FCE model[J].Journal of Environmental Engineering Technology,2022,12(5):1541-1547 doi: 10.12153/j.issn.1674-991X.20210218

基于AHP-FCE模型的制药行业清洁生产技术评价

doi: 10.12153/j.issn.1674-991X.20210218
基金项目: 厦门大学大学生创新创业训练计划项目(S202010384797);中国博士后科学基金资助项目(2019M650798)
详细信息
    作者简介:

    李娟(1988—),女,助理研究员,博士,主要从事水污染控制技术研究,lij2007@126.com

    通讯作者:

    曾萍(1971—),女,研究员,博士,主要从事工业废水污染控制研究,zengping@craes.org.cn

  • 中图分类号: X506

Evaluation of cleaner production technologies in pharmaceutical industry based on AHP-FCE model

  • 摘要:

    在制药行业推行清洁生产技术,从源头减少污染物的产生,有利于促进制药行业的健康、可持续发展。为正确选择适合的制药行业清洁生产技术,建立了包含技术、经济和环境指标的制药行业清洁生产技术评价指标体系,构建了层次分析法-模糊综合评价法(AHP-FCE)评价模型,确定了制药行业清洁生产技术的评价标准,并对4项制药行业清洁生产技术进行了综合评价。结果表明:在技术性能方面表现较优的是头孢氨苄酶法合成技术,在经济性能方面表现较优的是抗生素合成固定化酶规模化制备技术,在环境性能方面表现较优的是基于培养基替代的青霉素发酵减排技术;技术综合得分表明,头孢氨苄酶法合成技术是4项制药行业清洁生产技术中的最优技术。

     

  • 图  1  4项制药行业清洁生产技术准则层评价结果

    Figure  1.  Evaluation results of four cleaner production technologies in pharmaceutical industry

    表  1  备选的4项制药行业清洁生产技术简介

    Table  1.   Brief introduction of 4 alternative cleaner production technologies in the pharmaceutical industry

    技术名称技术内容适用范围
    基于培养基替代的青霉素
    发酵减排技术
    利用生理代谢参数指导合成培养基替代复合培养基的精确控制,实现青霉素发酵中营养的定量补加,促进产物快速合成及菌体形态控制,大幅降低废水的污染物排放量多种抗生素发酵过程
    头孢氨苄酶法合成技术针对头孢氨苄生产过程存在的能耗高、污染严重等问题开发的清洁生产技术。在水溶液中,以母核7-ADCA和侧链PGME为原料,固定化青霉素酰化酶为催化剂,一步催化反应合成头孢氨苄。该技术反应条件温和,工艺简单,不使用挥发性有机溶剂、基团保护剂等辅助化学品,从源头大幅减少了污染物排放头孢氨苄规模化生产
    头孢氨苄连续结晶
    技术与装备
    采用推进式全混型反应结晶装备,耦合调控体系pH和温度等工艺参数,进行多级连续流高效结晶,获得晶形完整、稳定性好的药物晶体产品,提高过程收率,降低母液中COD药物规模化清洁生产
    抗生素合成固定化酶
    规模化制备技术
    采用头孢氨苄合成酶固定化技术,实现固定化酶的规模化生产,以提高生产效率抗生素合成固定化
    酶规模化制备
    下载: 导出CSV

    表  2  制药行业清洁生产技术评价指标体系

    Table  2.   Evaluation index system of cleaner production technology in pharmaceutical industry

    目标层(A层)准则层指标层
    一级指标(B层)二级指标(C层)三级指标(D层)
    制药行业
    清洁生产
    技术评价
    技术性能
    (B1
    技术
    先进
    性(C1
    技术先进性
    (D1
    技术
    可靠
    性(C2
    每吨产品原料投入量(D2
    每吨产品水投入量(D3
    每吨产品有机溶剂投入量(D4
    原料转化率(D5
    技术
    适用
    性(C3
    使用寿命(D6
    系统稳定性(D7
    经济性能
    (B2
    技术成本
    (C4
    基建投资费用(D8
    每吨产品成本费用(D19
    年运行维护费(D10
    环境性能
    (B3
    环境效益
    (C5
    废水量削减效果(D11
    COD削减效果(D12
    氨氮削减效果(D13
    总磷削减效果(D14
    下载: 导出CSV

    表  3  制药行业清洁生产技术评价指标的等级标准

    Table  3.   Grade standard of evaluation index for cleaner production technology in pharmaceutical industry

    评价指标评价标准
    很好(5分)较好(3分)一般(1分)
    技术性能技术先进性技术先进性技术非常先进技术较为先进技术先进性一般
    技术可靠性每吨产品原料投入量原料投入量很低原料投入量较少原料投入量较多
    每吨产品水消耗量水消耗量很低水消耗量较低水消耗量较高
    每吨产品有机溶剂消耗量有机溶剂消耗量很低有机溶较高消耗量较低有机溶剂消耗量低
    原料转化率原料转化率高原料转化率较高原料转化率低
    技术适用性使用寿命使用寿命长使用寿命一般使用寿命短
    系统稳定性系统稳定性好系统稳定性一般系统稳定性差
    经济性能技术成本基建投资费用投资成本低,绝大多数
    企业都可以承受
    投资成本适中,一般企业
    可以承受
    投资成本高,中小型企业
    难以承受
    每吨产品成本费用成本低,绝大多数企业
    均可以负担
    成本适中,一般企业
    可以负担
    成本高,中小型企业
    难以负担
    年运行维护费维护费用低,绝大多数企业
    均可以负担
    维护费用适中,一般企业
    可以负担
    维护费用高,中小型企业
    难以负担
    环境性能环境效益废水量削减效果废水量削减率>50%废水量削减率为30%~50%废水量削减率<30%
    COD削减效果COD削减率>50%COD削减率为30%~50%COD削减率<30%
    氨氮削减效果氨氮削减率>50%氨氮削减率为30%~50%氨氮削减率<30%
    总磷削减效果总磷削减率>50%总磷削减率为30%~50%总磷削减率<30%
    下载: 导出CSV

    表  4  制药行业清洁生产技术评价指标权重

    Table  4.   Weight of technical evaluation indexes for cleaner production technology in pharmaceutical industry

    B层C层D层
    一级指标权重二级指标权重三级指标权重综合权重
    技术性能0.574 0技术先进性0.130 6技术先进性1.000 00.075 0
    技术可靠性0.580 1每吨产品原料投入量0.154 50.051 4
    每吨产品水消耗量0.084 30.028 1
    每吨产品有机溶剂消耗量0.457 90.152 5
    原料转化率0.303 30.101 0
    技术适用性0.289 3使用寿命0.228 60.038 0
    系统稳定性0.771 40.128 1
    经济性能0.118 0技术成本1.000 0基建投资费用0.187 30.022 1
    每吨产品成本费用0.598 60.070 6
    年运行维护费0.214 10.025 2
    环境性能0.308 0环境效益1.000 0废水削减量0.099 00.030 5
    COD削减效果0.305 50.094 1
    氨氮削减效果0.296 20.091 2
    总磷削减效果0.299 30.092 2
    下载: 导出CSV

    表  5  制药行业清洁生产技术专家打分统计结果

    Table  5.   Statistics of evaluation results of experts on cleaner production technologies in pharmaceutical industry

    评价指标基于培养基替代的青霉素
    发酵减排技术
    头孢氨苄酶法
    合成技术
    头孢氨苄连续结晶
    技术与装备
    抗生素合成固定化酶
    规模化制备技术
    很好较好一般很好较好一般很好较好一般很好较好一般
    技术
    性能
    技术先进性技术先进性0.5000.50000.6250.37500.3750.62500.5000.5000
    技术可靠性每吨产品原料投入量0.2500.75000.6250.37500.2500.6250.1250.3750.6250
    每吨产品水消耗量0.3750.5000.1250.5000.3750.1250.6250.37500.3750.2500.375
    每吨产品有机溶剂消耗量00.8750.1250.8750.12500.3750.5000.1250.5000.1250.375
    原料转化率0.5000.3750.1250.7500.25000.6250.37500.3750.6250
    技术适用性使用寿命0.2500.5000.2500.2500.6250.1250.2500.6250.1250.5000.2500.250
    系统稳定性0.2500.6250.1250.3750.5000.1250.2500.6250.1250.6250.2500.125
    经济
    性能
    技术成本基建投资费用0.1250.6250.2500.2500.6250.1250.2500.3750.3750.3750.3750.250
    每吨产品成本费用0100.250.7500.3750.5000.1250.6250.3750
    年运行维护费0.1250.87500.3750.62500.3750.3750.2500.5000.3750.125
    环境
    性能
    环境效益废水量削减效果0.3750.5000.1250.3750.5000.1250.5000.50000.2500.5000.250
    COD削减效果0.6250.37500.3750.62500.2500.75000.3750.5000.125
    氨氮削减效果0.5000.2500.2500.3750.5000.1250.1250.6250.2500.2500.6250.125
    总磷削减效果0.5000.2500.2500.5000.2500.2500.1250.5000.3750.1250.6250.250
    下载: 导出CSV

    表  6  4项制药行业清洁生产技术综合得分

    Table  6.   Comprehensive scores of four cleaner production technologies in pharmaceutical industry

    技术名称得分
    基于培养基替代的青霉素发酵减排技术3.409 7
    头孢氨苄酶法合成技术3.908 2
    头孢氨苄连续结晶技术与装备3.735 7
    抗生素合成固定化酶规模化制备技术3.534 1
    下载: 导出CSV
  • [1] HAN P. China's growing biomedical industry[J]. Biologicals,2009,37(3):169-172. doi: 10.1016/j.biologicals.2009.02.010
    [2] 成璐瑶, 曾萍, 魏健, 等.基于文献计量的制药废水处理专利发展趋势[J]. 环境科学研究,2019,32(1):17-24.

    CHENG L Y, ZENG P, WEI J, et al. Patent development trend on pharmaceutical wastewater using bibliometric analysis[J]. Research of Environmental Sciences,2019,32(1):17-24.
    [3] 刘晓晓.我国制药产业发展现状[J]. 现代经济信息,2018(13):397. doi: 10.3969/j.issn.1001-828X.2018.13.334
    [4] YU L L, CAO W, WU S C, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: preparation, characteristic, adsorption performance and mechanism[J]. Ecotoxicology and Environmental Safety,2018,164:289-296. doi: 10.1016/j.ecoenv.2018.07.110
    [5] ZHOU J L, ZHANG Z L, BANKS E, et al. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water[J]. Journal of Hazardous Materials,2009,166(2/3):655-661.
    [6] 廖苗, 樊亚东, 刘诗月, 等.进水成分变动下ABR-CASS耦合工艺处理制药综合废水的中试研究[J]. 环境工程技术学报,2017,7(3):293-299. doi: 10.3969/j.issn.1674-991X.2017.03.042

    LIAO M, FAN Y D, LIU S Y, et al. Pilot-scale treatment of pharmaceutical comprehensive wastewater by ABR-CASS fed with different batches of influent[J]. Journal of Environmental Engineering Technology,2017,7(3):293-299. doi: 10.3969/j.issn.1674-991X.2017.03.042
    [7] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta,2006,69(2):334-342. doi: 10.1016/j.talanta.2005.09.037
    [8] SHI X Q, LEONG K Y, NG H Y. Anaerobic treatment of pharmaceutical wastewater: a critical review[J]. Bioresource Technology,2017,245:1238-1244. doi: 10.1016/j.biortech.2017.08.150
    [9] AKCAL COMOGLU B, FILIK ISCEN C, ILHAN S. The anaerobic treatment of pharmaceutical industry wastewater in an anaerobic batch and upflow packed-bed reactor[J]. Desalination and Water Treatment,2016,57(14):6278-6289. doi: 10.1080/19443994.2015.1005691
    [10] 刘潇, 罗湘南, 邢书彬, 等.抗生素制药工艺清洁生产技术现状及应用[J]. 河北企业,2016(11):161-163. doi: 10.3969/j.issn.1008-1968.2016.11.096
    [11] PEYKANI P, MOHAMMADI E, SAEN R F, et al. Data envelopment analysis and robust optimization: a review[J]. Expert Systems,2020,37(4):e12534. doi: 10.1111/exsy.12534
    [12] 杨建新, 王如松.生命周期评价的回顾与展望[J]. 环境科学进展,1998(2):21-28.
    [13] CHEN C, ZHANG X M, CHEN J A, et al. Assessment of site contaminated soil remediation based on an input output life cycle assessment[J]. Journal of Cleaner Production,2020,263:121422. doi: 10.1016/j.jclepro.2020.121422
    [14] 王敬敏, 郭继伟, 连向军.两种改进的灰色关联分析法的比较研究[J]. 华北电力大学学报,2005,32(6):72-76.

    WANG J M, GUO J W, LIAN X J. Comparative study on two improved grey relational analysis[J]. Journal of North China Electric Power University,2005,32(6):72-76.
    [15] YU H, ZHANG K. The application of grey relational analysis model in the performance evaluation of agricultural product logistics companies[J]. Applied Mechanics and Materials, 2014, 687/688/689/690/691: 5165-5168.
    [16] BRADY S R. Utilizing and adapting the Delphi method for use in qualitative research[J/OL]. International Journal of Qualitative Methods, 2015.https://doi.org/10.1177/1609406915621381.
    [17] 郭金玉, 张忠彬, 孙庆云.层次分析法的研究与应用[J]. 中国安全科学学报,2008,18(5):148-153. doi: 10.3969/j.issn.1003-3033.2008.05.025

    GUO J Y, ZHANG Z B, SUN Q Y. Study and applications of analytic hierarchy process[J]. China Safety Science Journal,2008,18(5):148-153. doi: 10.3969/j.issn.1003-3033.2008.05.025
    [18] SUN W, WANG J L, FENG C M, et al. Weighting of performance index by analytic hierarchy process for water supply enterprises[J]. Applied Mechanics and Materials,2013,409/410:1004-1007. doi: 10.4028/www.scientific.net/AMM.409-410.1004
    [19] 熊德国, 鲜学福.模糊综合评价方法的改进[J]. 重庆大学学报(自然科学版),2003,26(6):93-95.

    XIONG D G, XIAN X F. Improvement of fuzzy comprehensive evaluation method[J]. Journal of Chongqing University (Natural Science Edition),2003,26(6):93-95.
    [20] YU H Y, CHEN Y L, WU Q, et al. Decision support for selecting optimal method of recycling waste tire rubber into wax-based warm mix asphalt based on fuzzy comprehensive evaluation[J]. Journal of Cleaner Production,2020,265:121781. doi: 10.1016/j.jclepro.2020.121781
    [21] FENG Q, SUN T. Comprehensive evaluation of benefits from environmental investment: take China as an example[J]. Environmental Science and Pollution Research International,2020,27(13):15292-15304. doi: 10.1007/s11356-020-08033-7
    [22] 韩利, 梅强, 陆玉梅, 等.AHP-模糊综合评价方法的分析与研究[J]. 中国安全科学学报,2004,14(7):86-89. doi: 10.3969/j.issn.1003-3033.2004.07.022

    HAN L, MEI Q, LU Y M, et al. Analysis and study on AHP-fuzzy comprehensive evaluation[J]. China Safety Science Journal,2004,14(7):86-89. doi: 10.3969/j.issn.1003-3033.2004.07.022
    [23] 戴汉良.基于AHP和FCE的高校行政管理人员绩效考核体系研究[J]. 宁波工程学院学报,2019,31(3):87-93. doi: 10.3969/j.issn.1008-7109.2019.03.015

    DAI H L. Performance appraisal system of administrative personnel in colleges and universities based on analytic hierarchy process and fuzzy synthetic methods[J]. Journal of Ningbo University of Technology,2019,31(3):87-93. doi: 10.3969/j.issn.1008-7109.2019.03.015
    [24] 陈伟伟.基于AHP与FCE的高值医用耗材管理软件选择评价方法探讨[J]. 医疗卫生装备,2019,40(10):85-89.

    CHEN W W. Evaluation method used for selecting high-value medical consumables management software based on combined AHP and FCE[J]. Chinese Medical Equipment Journal,2019,40(10):85-89.
    [25] ZHANG Y L, FAN Q. The application of the fuzzy analytic hierarchy process in the assessment and improvement of the human settlement environment[J]. Sustainability,2020,12(4):1563. doi: 10.3390/su12041563
    [26] DAI L L, LI J. Study on the quality of private university education based on analytic hierarchy process and fuzzy comprehensive evaluation method1[J]. Journal of Intelligent & Fuzzy Systems,2016,31(4):2241-2247.
    [27] 张大鹏, 刘红纯, 夏雪莹.基于AHP-FCE模型的乡村旅游服务质量评价: 以武汉市大余湾为例[J]. 安徽农业科学,2016,44(27):179-183. doi: 10.3969/j.issn.0517-6611.2016.27.062

    ZHANG D P, LIU H C, XIA X Y. Evaluation of the rural tourism service quality based on AHP-FEC model:a case study of Dayuwan in Wuhan City[J]. Journal of Anhui Agricultural Sciences,2016,44(27):179-183. doi: 10.3969/j.issn.0517-6611.2016.27.062
    [28] 栾黎明, 齐兆军, 寇云鹏.基于AHP-FCE的尾砂脱水方案优选[J]. 矿业研究与开发,2020,40(3):150-154. doi: 10.13827/j.cnki.kyyk.2020.03.031

    LUAN L M, QI Z J, KOU Y P. Optimization of tailings dewatering method based on AHP-FCE[J]. Mining Research and Development,2020,40(3):150-154. doi: 10.13827/j.cnki.kyyk.2020.03.031
    [29] WANG S M, LUO Y, LUO L. Study on risk evaluation of intellectual property pledge loan based on fuzzy analytic hierarchy process[J]. Journal of Physics:Conference Series,2020,1486(4):042039. doi: 10.1088/1742-6596/1486/4/042039
    [30] 姜河, 周建飞, 廖学品, 等.牛皮制革过程污染控制技术评估模型的建立与实证[J]. 中国皮革,2018,47(11):40-47.

    JIANG H, ZHOU J F, LIAO X P, et al. Evaluation method development and case analysis of pollution control technologies for cowhide leather manufacturing process[J]. China Leather,2018,47(11):40-47.
    [31] 李娟, 成璐瑶, 曾萍, 等.基于AHP-FCE模型的制药废水处理技术综合评价[J]. 环境工程技术学报,2021,11(3):591-598. doi: 10.12153/j.issn.1674-991X.20200151

    LI J, CHENG L Y, ZENG P, et al. Comprehensive evaluation of wastewater treatment technology in pharmaceutical industry based on AHP-FCE model[J]. Journal of Environmental Engineering Technology,2021,11(3):591-598. doi: 10.12153/j.issn.1674-991X.20200151
    [32] ILLANES A, WILSON L, ALTAMIRANO C, et al. Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450[J]. Enzyme and Microbial Technology,2007,40(2):195-203. ◇ doi: 10.1016/j.enzmictec.2006.03.041
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  208
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08

目录

    /

    返回文章
    返回