Evaluation of cleaner production technologies in pharmaceutical industry based on AHP-FCE model
-
摘要:
在制药行业推行清洁生产技术,从源头减少污染物的产生,有利于促进制药行业的健康、可持续发展。为正确选择适合的制药行业清洁生产技术,建立了包含技术、经济和环境指标的制药行业清洁生产技术评价指标体系,构建了层次分析法-模糊综合评价法(AHP-FCE)评价模型,确定了制药行业清洁生产技术的评价标准,并对4项制药行业清洁生产技术进行了综合评价。结果表明:在技术性能方面表现较优的是头孢氨苄酶法合成技术,在经济性能方面表现较优的是抗生素合成固定化酶规模化制备技术,在环境性能方面表现较优的是基于培养基替代的青霉素发酵减排技术;技术综合得分表明,头孢氨苄酶法合成技术是4项制药行业清洁生产技术中的最优技术。
Abstract:The implementation of cleaner production technologies in the pharmaceutical industry can reduce the generation of pollutants from the source, which is conducive to promoting the healthy and sustainable development of the pharmaceutical industry. In order to correctly select the appropriate cleaner production technologies in the pharmaceutical industry, the evaluation index system of cleaner production technologies in the pharmaceutical industry including technical, economic and environmental indexes was established, and the analytic hierarchy process-fuzzy comprehensive evaluation (AHP-FCE) model was constructed. The evaluation standard of cleaner production technologies in the pharmaceutical industry was determined, and the comprehensive evaluation of four cleaner production technologies in the pharmaceutical industry was carried out based on the AHP-FCE model. The results showed that cephalexin enzymatic synthesis technology was better in technical performance, large-scale preparation technology of immobilized enzyme for antibiotic synthesis was better in economic performance, and penicillin fermentation and emission reduction technology based on medium substitution was better in environmental performance. The comprehensive evaluation results showed that cephalexin enzymatic synthesis technology was the best technology in four cleaner production technologies in pharmaceutical industry.
-
表 1 备选的4项制药行业清洁生产技术简介
Table 1. Brief introduction of 4 alternative cleaner production technologies in the pharmaceutical industry
技术名称 技术内容 适用范围 基于培养基替代的青霉素
发酵减排技术利用生理代谢参数指导合成培养基替代复合培养基的精确控制,实现青霉素发酵中营养的定量补加,促进产物快速合成及菌体形态控制,大幅降低废水的污染物排放量 多种抗生素发酵过程 头孢氨苄酶法合成技术 针对头孢氨苄生产过程存在的能耗高、污染严重等问题开发的清洁生产技术。在水溶液中,以母核7-ADCA和侧链PGME为原料,固定化青霉素酰化酶为催化剂,一步催化反应合成头孢氨苄。该技术反应条件温和,工艺简单,不使用挥发性有机溶剂、基团保护剂等辅助化学品,从源头大幅减少了污染物排放 头孢氨苄规模化生产 头孢氨苄连续结晶
技术与装备采用推进式全混型反应结晶装备,耦合调控体系pH和温度等工艺参数,进行多级连续流高效结晶,获得晶形完整、稳定性好的药物晶体产品,提高过程收率,降低母液中COD 药物规模化清洁生产 抗生素合成固定化酶
规模化制备技术采用头孢氨苄合成酶固定化技术,实现固定化酶的规模化生产,以提高生产效率 抗生素合成固定化
酶规模化制备表 2 制药行业清洁生产技术评价指标体系
Table 2. Evaluation index system of cleaner production technology in pharmaceutical industry
目标层(A层) 准则层 指标层 一级指标(B层) 二级指标(C层) 三级指标(D层) 制药行业
清洁生产
技术评价技术性能
(B1)技术
先进
性(C1)技术先进性
(D1)技术
可靠
性(C2)每吨产品原料投入量(D2) 每吨产品水投入量(D3) 每吨产品有机溶剂投入量(D4) 原料转化率(D5) 技术
适用
性(C3)使用寿命(D6) 系统稳定性(D7) 经济性能
(B2)技术成本
(C4)基建投资费用(D8) 每吨产品成本费用(D19) 年运行维护费(D10) 环境性能
(B3)环境效益
(C5)废水量削减效果(D11) COD削减效果(D12) 氨氮削减效果(D13) 总磷削减效果(D14) 表 3 制药行业清洁生产技术评价指标的等级标准
Table 3. Grade standard of evaluation index for cleaner production technology in pharmaceutical industry
评价指标 评价标准 很好(5分) 较好(3分) 一般(1分) 技术性能 技术先进性 技术先进性 技术非常先进 技术较为先进 技术先进性一般 技术可靠性 每吨产品原料投入量 原料投入量很低 原料投入量较少 原料投入量较多 每吨产品水消耗量 水消耗量很低 水消耗量较低 水消耗量较高 每吨产品有机溶剂消耗量 有机溶剂消耗量很低 有机溶较高消耗量较低 有机溶剂消耗量低 原料转化率 原料转化率高 原料转化率较高 原料转化率低 技术适用性 使用寿命 使用寿命长 使用寿命一般 使用寿命短 系统稳定性 系统稳定性好 系统稳定性一般 系统稳定性差 经济性能 技术成本 基建投资费用 投资成本低,绝大多数
企业都可以承受投资成本适中,一般企业
可以承受投资成本高,中小型企业
难以承受每吨产品成本费用 成本低,绝大多数企业
均可以负担成本适中,一般企业
可以负担成本高,中小型企业
难以负担年运行维护费 维护费用低,绝大多数企业
均可以负担维护费用适中,一般企业
可以负担维护费用高,中小型企业
难以负担环境性能 环境效益 废水量削减效果 废水量削减率>50% 废水量削减率为30%~50% 废水量削减率<30% COD削减效果 COD削减率>50% COD削减率为30%~50% COD削减率<30% 氨氮削减效果 氨氮削减率>50% 氨氮削减率为30%~50% 氨氮削减率<30% 总磷削减效果 总磷削减率>50% 总磷削减率为30%~50% 总磷削减率<30% 表 4 制药行业清洁生产技术评价指标权重
Table 4. Weight of technical evaluation indexes for cleaner production technology in pharmaceutical industry
B层 C层 D层 一级指标 权重 二级指标 权重 三级指标 权重 综合权重 技术性能 0.574 0 技术先进性 0.130 6 技术先进性 1.000 0 0.075 0 技术可靠性 0.580 1 每吨产品原料投入量 0.154 5 0.051 4 每吨产品水消耗量 0.084 3 0.028 1 每吨产品有机溶剂消耗量 0.457 9 0.152 5 原料转化率 0.303 3 0.101 0 技术适用性 0.289 3 使用寿命 0.228 6 0.038 0 系统稳定性 0.771 4 0.128 1 经济性能 0.118 0 技术成本 1.000 0 基建投资费用 0.187 3 0.022 1 每吨产品成本费用 0.598 6 0.070 6 年运行维护费 0.214 1 0.025 2 环境性能 0.308 0 环境效益 1.000 0 废水削减量 0.099 0 0.030 5 COD削减效果 0.305 5 0.094 1 氨氮削减效果 0.296 2 0.091 2 总磷削减效果 0.299 3 0.092 2 表 5 制药行业清洁生产技术专家打分统计结果
Table 5. Statistics of evaluation results of experts on cleaner production technologies in pharmaceutical industry
评价指标 基于培养基替代的青霉素
发酵减排技术头孢氨苄酶法
合成技术头孢氨苄连续结晶
技术与装备抗生素合成固定化酶
规模化制备技术很好 较好 一般 很好 较好 一般 很好 较好 一般 很好 较好 一般 技术
性能技术先进性 技术先进性 0.500 0.500 0 0.625 0.375 0 0.375 0.625 0 0.500 0.500 0 技术可靠性 每吨产品原料投入量 0.250 0.750 0 0.625 0.375 0 0.250 0.625 0.125 0.375 0.625 0 每吨产品水消耗量 0.375 0.500 0.125 0.500 0.375 0.125 0.625 0.375 0 0.375 0.250 0.375 每吨产品有机溶剂消耗量 0 0.875 0.125 0.875 0.125 0 0.375 0.500 0.125 0.500 0.125 0.375 原料转化率 0.500 0.375 0.125 0.750 0.250 0 0.625 0.375 0 0.375 0.625 0 技术适用性 使用寿命 0.250 0.500 0.250 0.250 0.625 0.125 0.250 0.625 0.125 0.500 0.250 0.250 系统稳定性 0.250 0.625 0.125 0.375 0.500 0.125 0.250 0.625 0.125 0.625 0.250 0.125 经济
性能技术成本 基建投资费用 0.125 0.625 0.250 0.250 0.625 0.125 0.250 0.375 0.375 0.375 0.375 0.250 每吨产品成本费用 0 1 0 0.25 0.75 0 0.375 0.500 0.125 0.625 0.375 0 年运行维护费 0.125 0.875 0 0.375 0.625 0 0.375 0.375 0.250 0.500 0.375 0.125 环境
性能环境效益 废水量削减效果 0.375 0.500 0.125 0.375 0.500 0.125 0.500 0.500 0 0.250 0.500 0.250 COD削减效果 0.625 0.375 0 0.375 0.625 0 0.250 0.750 0 0.375 0.500 0.125 氨氮削减效果 0.500 0.250 0.250 0.375 0.500 0.125 0.125 0.625 0.250 0.250 0.625 0.125 总磷削减效果 0.500 0.250 0.250 0.500 0.250 0.250 0.125 0.500 0.375 0.125 0.625 0.250 表 6 4项制药行业清洁生产技术综合得分
Table 6. Comprehensive scores of four cleaner production technologies in pharmaceutical industry
技术名称 得分 基于培养基替代的青霉素发酵减排技术 3.409 7 头孢氨苄酶法合成技术 3.908 2 头孢氨苄连续结晶技术与装备 3.735 7 抗生素合成固定化酶规模化制备技术 3.534 1 -
[1] HAN P. China's growing biomedical industry[J]. Biologicals,2009,37(3):169-172. doi: 10.1016/j.biologicals.2009.02.010 [2] 成璐瑶, 曾萍, 魏健, 等.基于文献计量的制药废水处理专利发展趋势[J]. 环境科学研究,2019,32(1):17-24.CHENG L Y, ZENG P, WEI J, et al. Patent development trend on pharmaceutical wastewater using bibliometric analysis[J]. Research of Environmental Sciences,2019,32(1):17-24. [3] 刘晓晓.我国制药产业发展现状[J]. 现代经济信息,2018(13):397. doi: 10.3969/j.issn.1001-828X.2018.13.334 [4] YU L L, CAO W, WU S C, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: preparation, characteristic, adsorption performance and mechanism[J]. Ecotoxicology and Environmental Safety,2018,164:289-296. doi: 10.1016/j.ecoenv.2018.07.110 [5] ZHOU J L, ZHANG Z L, BANKS E, et al. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water[J]. Journal of Hazardous Materials,2009,166(2/3):655-661. [6] 廖苗, 樊亚东, 刘诗月, 等.进水成分变动下ABR-CASS耦合工艺处理制药综合废水的中试研究[J]. 环境工程技术学报,2017,7(3):293-299. doi: 10.3969/j.issn.1674-991X.2017.03.042LIAO M, FAN Y D, LIU S Y, et al. Pilot-scale treatment of pharmaceutical comprehensive wastewater by ABR-CASS fed with different batches of influent[J]. Journal of Environmental Engineering Technology,2017,7(3):293-299. doi: 10.3969/j.issn.1674-991X.2017.03.042 [7] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta,2006,69(2):334-342. doi: 10.1016/j.talanta.2005.09.037 [8] SHI X Q, LEONG K Y, NG H Y. Anaerobic treatment of pharmaceutical wastewater: a critical review[J]. Bioresource Technology,2017,245:1238-1244. doi: 10.1016/j.biortech.2017.08.150 [9] AKCAL COMOGLU B, FILIK ISCEN C, ILHAN S. The anaerobic treatment of pharmaceutical industry wastewater in an anaerobic batch and upflow packed-bed reactor[J]. Desalination and Water Treatment,2016,57(14):6278-6289. doi: 10.1080/19443994.2015.1005691 [10] 刘潇, 罗湘南, 邢书彬, 等.抗生素制药工艺清洁生产技术现状及应用[J]. 河北企业,2016(11):161-163. doi: 10.3969/j.issn.1008-1968.2016.11.096 [11] PEYKANI P, MOHAMMADI E, SAEN R F, et al. Data envelopment analysis and robust optimization: a review[J]. Expert Systems,2020,37(4):e12534. doi: 10.1111/exsy.12534 [12] 杨建新, 王如松.生命周期评价的回顾与展望[J]. 环境科学进展,1998(2):21-28. [13] CHEN C, ZHANG X M, CHEN J A, et al. Assessment of site contaminated soil remediation based on an input output life cycle assessment[J]. Journal of Cleaner Production,2020,263:121422. doi: 10.1016/j.jclepro.2020.121422 [14] 王敬敏, 郭继伟, 连向军.两种改进的灰色关联分析法的比较研究[J]. 华北电力大学学报,2005,32(6):72-76.WANG J M, GUO J W, LIAN X J. Comparative study on two improved grey relational analysis[J]. Journal of North China Electric Power University,2005,32(6):72-76. [15] YU H, ZHANG K. The application of grey relational analysis model in the performance evaluation of agricultural product logistics companies[J]. Applied Mechanics and Materials, 2014, 687/688/689/690/691: 5165-5168. [16] BRADY S R. Utilizing and adapting the Delphi method for use in qualitative research[J/OL]. International Journal of Qualitative Methods, 2015.https://doi.org/10.1177/1609406915621381. [17] 郭金玉, 张忠彬, 孙庆云.层次分析法的研究与应用[J]. 中国安全科学学报,2008,18(5):148-153. doi: 10.3969/j.issn.1003-3033.2008.05.025GUO J Y, ZHANG Z B, SUN Q Y. Study and applications of analytic hierarchy process[J]. China Safety Science Journal,2008,18(5):148-153. doi: 10.3969/j.issn.1003-3033.2008.05.025 [18] SUN W, WANG J L, FENG C M, et al. Weighting of performance index by analytic hierarchy process for water supply enterprises[J]. Applied Mechanics and Materials,2013,409/410:1004-1007. doi: 10.4028/www.scientific.net/AMM.409-410.1004 [19] 熊德国, 鲜学福.模糊综合评价方法的改进[J]. 重庆大学学报(自然科学版),2003,26(6):93-95.XIONG D G, XIAN X F. Improvement of fuzzy comprehensive evaluation method[J]. Journal of Chongqing University (Natural Science Edition),2003,26(6):93-95. [20] YU H Y, CHEN Y L, WU Q, et al. Decision support for selecting optimal method of recycling waste tire rubber into wax-based warm mix asphalt based on fuzzy comprehensive evaluation[J]. Journal of Cleaner Production,2020,265:121781. doi: 10.1016/j.jclepro.2020.121781 [21] FENG Q, SUN T. Comprehensive evaluation of benefits from environmental investment: take China as an example[J]. Environmental Science and Pollution Research International,2020,27(13):15292-15304. doi: 10.1007/s11356-020-08033-7 [22] 韩利, 梅强, 陆玉梅, 等.AHP-模糊综合评价方法的分析与研究[J]. 中国安全科学学报,2004,14(7):86-89. doi: 10.3969/j.issn.1003-3033.2004.07.022HAN L, MEI Q, LU Y M, et al. Analysis and study on AHP-fuzzy comprehensive evaluation[J]. China Safety Science Journal,2004,14(7):86-89. doi: 10.3969/j.issn.1003-3033.2004.07.022 [23] 戴汉良.基于AHP和FCE的高校行政管理人员绩效考核体系研究[J]. 宁波工程学院学报,2019,31(3):87-93. doi: 10.3969/j.issn.1008-7109.2019.03.015DAI H L. Performance appraisal system of administrative personnel in colleges and universities based on analytic hierarchy process and fuzzy synthetic methods[J]. Journal of Ningbo University of Technology,2019,31(3):87-93. doi: 10.3969/j.issn.1008-7109.2019.03.015 [24] 陈伟伟.基于AHP与FCE的高值医用耗材管理软件选择评价方法探讨[J]. 医疗卫生装备,2019,40(10):85-89.CHEN W W. Evaluation method used for selecting high-value medical consumables management software based on combined AHP and FCE[J]. Chinese Medical Equipment Journal,2019,40(10):85-89. [25] ZHANG Y L, FAN Q. The application of the fuzzy analytic hierarchy process in the assessment and improvement of the human settlement environment[J]. Sustainability,2020,12(4):1563. doi: 10.3390/su12041563 [26] DAI L L, LI J. Study on the quality of private university education based on analytic hierarchy process and fuzzy comprehensive evaluation method1[J]. Journal of Intelligent & Fuzzy Systems,2016,31(4):2241-2247. [27] 张大鹏, 刘红纯, 夏雪莹.基于AHP-FCE模型的乡村旅游服务质量评价: 以武汉市大余湾为例[J]. 安徽农业科学,2016,44(27):179-183. doi: 10.3969/j.issn.0517-6611.2016.27.062ZHANG D P, LIU H C, XIA X Y. Evaluation of the rural tourism service quality based on AHP-FEC model:a case study of Dayuwan in Wuhan City[J]. Journal of Anhui Agricultural Sciences,2016,44(27):179-183. doi: 10.3969/j.issn.0517-6611.2016.27.062 [28] 栾黎明, 齐兆军, 寇云鹏.基于AHP-FCE的尾砂脱水方案优选[J]. 矿业研究与开发,2020,40(3):150-154. doi: 10.13827/j.cnki.kyyk.2020.03.031LUAN L M, QI Z J, KOU Y P. Optimization of tailings dewatering method based on AHP-FCE[J]. Mining Research and Development,2020,40(3):150-154. doi: 10.13827/j.cnki.kyyk.2020.03.031 [29] WANG S M, LUO Y, LUO L. Study on risk evaluation of intellectual property pledge loan based on fuzzy analytic hierarchy process[J]. Journal of Physics:Conference Series,2020,1486(4):042039. doi: 10.1088/1742-6596/1486/4/042039 [30] 姜河, 周建飞, 廖学品, 等.牛皮制革过程污染控制技术评估模型的建立与实证[J]. 中国皮革,2018,47(11):40-47.JIANG H, ZHOU J F, LIAO X P, et al. Evaluation method development and case analysis of pollution control technologies for cowhide leather manufacturing process[J]. China Leather,2018,47(11):40-47. [31] 李娟, 成璐瑶, 曾萍, 等.基于AHP-FCE模型的制药废水处理技术综合评价[J]. 环境工程技术学报,2021,11(3):591-598. doi: 10.12153/j.issn.1674-991X.20200151LI J, CHENG L Y, ZENG P, et al. Comprehensive evaluation of wastewater treatment technology in pharmaceutical industry based on AHP-FCE model[J]. Journal of Environmental Engineering Technology,2021,11(3):591-598. doi: 10.12153/j.issn.1674-991X.20200151 [32] ILLANES A, WILSON L, ALTAMIRANO C, et al. Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450[J]. Enzyme and Microbial Technology,2007,40(2):195-203. ◇ doi: 10.1016/j.enzmictec.2006.03.041