Research progress of the visible light degradation of organic pollutants over molybdenum disulfide-based heterojunction catalysts
-
摘要:
光催化是近年来迅速发展的、利用太阳能进行能源转化和环境净化的新技术。二硫化钼具有层状结构,是过渡金属硫族化合物的代表,因具有带隙窄、活性位点多、比表面积大的优点而成为良好的助催化剂,广泛应用于光催化降解有机污染物。介绍了国内外不同类型二硫化钼基异质结催化剂(金属氧化物、铋基材料、银基材料、金属硫化物、石墨氮化碳、氧化石墨烯)的研究现状,对比了二硫化钼基异质结催化剂的制备方式及光催化降解有机污染物的效果,并简述其降解机理。结果表明,二硫化钼的耦合作用可以有效提高基质材料的光催化活性。今后研究将继续围绕开发高效、高稳定性和可回收的二硫化钼基异质结催化剂来展开。
Abstract:Photocatalysis is a new technology developed rapidly in recent years, which uses solar energy for energy conversion and environmental purification. Molybdenum disulfide has a layered structure and is the representative of transition metal chalcogenides. It has become a good catalyst because of its narrow band gap, many active sites and large specific surface area, and is widely used in the photocatalytic degradation of organic pollutants. The domestic and international research status of different types of molybdenum disulfide-based heterojunction catalysts (metal oxides, bismuth-based materials, silver-based materials, metal sulfides, graphite carbon nitride, graphene oxide) were introduced. The preparation methods and photocatalytic degradation effects of organic pollutants of molybdenum disulfide-based heterojunction catalysts were compared, and their degradation mechanisms were briefly described. The results showed that the coupling effect of molybdenum disulfide could effectively improve the photocatalytic activity of matrix materials. Future research should continue to focus on the development of high efficient, stable and recyclable molybdenum disulfide-based heterojunction catalysts.
-
Key words:
- molybdenum disulfide /
- heterojunction /
- photocatalyst /
- photodegradation /
- organic pollutants
-
表 1 MoS2/金属氧化物异质结材料性能
Table 1. Properties of MoS2/metal oxide heterojunction materials
催化剂 形态结构特征 制备方法 反应条件 污染物 降解率/% MoS2/TiO2[23] 超薄MoS2纳米片、
TiO2纳米管水热法 500 W氙灯,180 min 罗丹明B
亚甲基蓝76.33
100MoS2/TiO2[25] 中空介孔纳米球状 模板法、水热法 300 W氙灯,100 min 罗丹明B 89 N-TiO2-x@MoS2[26] 花球状核壳结构 水热法、原位固相
化学还原法300 W氙灯,120 min 甲基橙 91.8 MoS2/ZnO[27] 纳米球状 水热法 300 W氙灯,180 min 亚甲基蓝 88 MoS2/ZnO[28] MoS2量子点、ZnO纳米球 水热法 自然光,90 min 罗丹明B 100 N-ZnO/MoS2[29] MoS2纳米花、N-ZnO纳米棒 水热法 可见光,180 min 盐酸四环素 84 Cu2O/MoS2[30] Cu2O立方体、Cu2O八面体 化学剥离法、
溶胶凝胶法300 W氙灯,120 min 茶碱 90~100 Cu2O/MoS2/rGO[31] Cu2O立方体、
花状MoS2/rGO水热法、
溶胶凝胶法可见光,90 min 酸性蓝92染料 85~95 g-C3N4/WO3/MoS2[32] WO3纳米片、多孔层状g-C3N4、花状MoS2 煅烧法、水热法
浸渍法300 W氙灯,染料60 min
有机溶液120 min罗丹明B甲基橙亚甲基蓝AO7溶液
双酚A阿特拉津2-氯酚10085~9580~8595~100
324628WO3@MoS2/Ag[33] 空心管 水热法 500 W氙灯,120 min 双酚A 92.51 MoO3@MoS2[34] 多孔核壳纳米棒 水热法 300 W氙灯,120 min 罗丹明B 85~95 表 2 MoS2/Bi基异质结材料性能
Table 2. Properties of MoS2/Bi-based heterojunction materials
催化剂 形态特征 制备方法 反应条件 污染物 降解率/% MoS2/BiOI[35] 花球状 水热法 500 W氙灯,90 min 罗丹明B 100 BiOI/MoS2[36] 三维纳米花状 溶剂热法 可见光,75 min 甲基橙
盐酸四环素95.6
91.5MoS2/BiOCl[37] 球状 水热法 可见光,21 min 罗丹明B 98.6 MoS2/BiOCl[38] 二维片状 超声辅助法 150 W氙灯,50 min 罗丹明B 100 MoS2/BiOBr[39] 球状 溶剂热法 300 W氙灯,50 min 罗丹明B 94 MoS2/BiOBr[40] 多层空心微球状 微波辅助水热法 300 W氙灯,360 min 环丙沙星 87 MoS2/BiOBr[41] 纳米花状 机械球磨法 可见光,120 min 盐酸四环素 68 MoS2/BiPO4[42] 纳米棒 水热法 太阳光,70 min 亮绿色染料 80 BiPO4-MoS2/GO[43] 纳米片 微波辅助水热法 125 W汞灯,90 min 罗丹明B Bi2S3@MoS2[44] 三维球状 水热法 300 W氙灯,40 min 罗丹明B
亚甲基蓝92 Bi2S3/MoS2[45] 花球状 微波辅助水热法 350 W氙灯,60 min 亚甲基蓝 96 Bi2S3/MoS2/Bi2MoO6[46] Bi2MoO6纳米片、MoS2
纳米片、Bi2S3纳米线阴离子交换法 300 W氙灯,60 min 罗丹明B 99.5 Bi2O3/Bi2S3/MoS2[47] 纳米板状 水热法 300 W氙灯 亚甲基蓝 90 BiVO4/Bi2S3/MoS2[48] 四方枕头状 水热法 自然光,360 min 罗丹明B亚甲基蓝
孔雀石绿9793
94表 3 MoS2/Ag基异质结材料性能
Table 3. Properties of MoS2/Ag-based heterojunction materials
催化剂 形态特征 制备方法 反应条件 污染物 降解率/% Ag2MoO4/Ag2S/MoS2[49] Ag2MoO4不规则菱形多面体、
Ag2S球形纳米粒子、花球状MoS2水热法 300 W氙灯,15、100 min 罗丹明B
盐酸四环素93.9
42.8Ag2S/Ag@MoS2[55] MoS2纳米片 水热法 300 W氙灯,50 min 亚甲基蓝 96.2 Ag2S/Fe3O4/MoS2[51] 针状球体 溶剂热法 300 W氙灯,120 min 罗丹明B 73.3 MoS2/Ag3PO4[52] 不对称Ag3PO4多面体、超薄MoS2纳米片 微波辅助水热法 300 W汞灯,40 min 盐酸四环素 80.5 Ag3PO4/MoS2[53] 球形Ag3PO4纳米颗粒、MoS2纳米片 湿化学法 60 W光源,15 min 亚甲基蓝 97.6 CC@MoS2-Ag3PO4[54] 花状MoS2、碳纳米管、Ag3PO4纳米颗粒 水热法 300 W氙灯,80 min 罗丹明B 96 表 4 MoS2/金属硫化物异质结材料性能
Table 4. Properties of MoS2/metal sulfide heterojunction materials
催化剂 形态特征 制备方法 反应条件 污染物 降解率/% Cu2S/MoS2[55] 花球状 水热法 500 W氙灯,75 min 亚甲基蓝 95~100 Cu2S/MoS2[56] 纳米针状 水热法 光电管,30 min 苯酚 90 MoS2/Cu2S[57] 雪花状 水热法 300 W氙灯,60 min 甲基橙 72.8 MoS2/ZnS[58] 层状纳米片 水热法 可见光,32 min 亚甲基蓝 99.89 MoS2/ZnS[59] 多孔层状 水热法 氙灯,40 min 结晶紫 100 rGO/ZnS-MoS2[60] 不规则纳米球状ZnS、
三维分级球花状MoS2溶剂热法 300 W氙灯,180 min 2-NP 90.57 MoS2/ZnS@NSC[61] 球形ZnS 水热法、煅烧法 90 min 三氯杀螨醇 84.5 MoS2/CdS[62] 超薄MoS2 溶剂热法 350 W氙灯,60 min 甲基橙 90~100 C3N4/CdS/MoS2[63] 多孔三明治 水热法、煅烧法 300 W氙灯,45 min 罗丹明B 90~100 O-MoS2/CdS/g-C3N4[64] 球状 煅烧法 可见光,180 min 双酚A 95.2 MoS2/CdS/TiO2/CNFs[65] 纳米纤维 静电纺丝法、
热处理法太阳光,15 min 亚甲基蓝 100 Mt@MoS2/CdS[66] 二维纳米片Mt 水热法 300 W氙灯,45 min 罗丹明B 98.8 表 5 MoS2/g-C3N4异质结材料性能
Table 5. Properties of MoS2/g-C3N4 heterojunction materials
-
[1] WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Safety and Environmental Protection,2018,118:40-58. doi: 10.1016/j.psep.2018.06.025 [2] SALEH I A, ZOUARI N, AL-GHOUTI M A. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches[J]. Environmental Technology & Innovation,2020,19:101026. [3] XIE Y H, REN L L, ZHU X Q, et al. Physical and chemical treatments for removal of perchlorate from water: a review[J]. Process Safety and Environmental Protection,2018,116:180-198. doi: 10.1016/j.psep.2018.02.009 [4] ZHANG J J, ZHANG S G, LIU B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review[J]. Journal of Cleaner Production,2020,250:119507. doi: 10.1016/j.jclepro.2019.119507 [5] DU J Q, ZHANG B G, LI J X, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review[J]. Chinese Chemical Letters,2020,31(10):2575-2582. doi: 10.1016/j.cclet.2020.07.050 [6] CUI E T, YU G Y, HUANG H T, et al. Current advances in MoS2/semiconductor heterojunction with enhanced photocatalytic activity[J]. Current Opinion in Green and Sustainable Chemistry,2017,6:42-47. doi: 10.1016/j.cogsc.2017.05.009 [7] SHAHRIARI M, DEZFULI A G, SABAEIAN M. Investigation of uniaxial and biaxial strains on the band gap modifications of monolayer MoS2 with tight-binding method[J]. Superlattices and Microstructures,2019,125:34-57. doi: 10.1016/j.spmi.2018.10.001 [8] 吴正颖, 刘谢, 刘劲松, 等.二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展,2019,31(8):1086-1102.WU Z Y, LIU X, LIU J S, et al. Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties[J]. Progress in Chemistry,2019,31(8):1086-1102. [9] SINGH A K, KUMAR P, LATE D J, et al. 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects[J]. Applied Materials Today,2018,13:242-270. doi: 10.1016/j.apmt.2018.09.003 [10] 徐晨曦, 胡安俊, 舒朝著, 等.金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程,2020,48(9):34-46. doi: 10.11868/j.issn.1001-4381.2019.000509XU C X, HU A J, SHU C Z, et al. Application progress of metallic phase of molybdenum disulfide for energy storage and conversion[J]. Journal of Materials Engineering,2020,48(9):34-46. doi: 10.11868/j.issn.1001-4381.2019.000509 [11] LUO L J, SHI M, ZHAO S M, et al. Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A[J]. Journal of Saudi Chemical Society,2019,23(6):762-773. doi: 10.1016/j.jscs.2019.01.005 [12] LUO S W, CULLEN C P, GUO G C, et al. Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition[J]. Applied Surface Science,2020,508:145126. doi: 10.1016/j.apsusc.2019.145126 [13] MASOUMI Z, TAYEBI M, LEE B K. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe2O3/MoS2 photoanode[J]. Ultrasonics Sonochemistry,2021,72:105403. doi: 10.1016/j.ultsonch.2020.105403 [14] KUMAR S, MISHRA T. Shock wave induced exfoliation of molybdenum disulfide (MoS2) in various solvents: all-atom molecular dynamics simulation[J]. Journal of Molecular Liquids,2020,314:113671. doi: 10.1016/j.molliq.2020.113671 [15] YOSHIDA K, KAWASAKI T, de KUWABARA A, et al. In situ electron microscopic observation of electrochemical Li-intercalation into MoS2[J]. Solid State Ionics,2020,357:115488. doi: 10.1016/j.ssi.2020.115488 [16] 刘成. 二硫化钼基复合材料的合成及其光催化性能研究[D]. 西安: 西北大学, 2019. [17] HASIJA V, RAIZADA P, THAKUR V K, et al. An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification[J]. Journal of Environmental Chemical Engineering,2020,8(5):104307. doi: 10.1016/j.jece.2020.104307 [18] HONG L, LI J Z, LIU F G, et al. Morphology-controllable fabrication of Ag@MoS2 composites with improved antioxidant activities at low Ag loading[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,596:124722. doi: 10.1016/j.colsurfa.2020.124722 [19] NI S, YANG L R, QU H N, et al. Tailoring the structure and energy level over transition-metal doped MoS2 towards enhancing 4-nitrophenol reduction reaction[J]. Journal of Environmental Chemical Engineering,2021,9(2):105101. doi: 10.1016/j.jece.2021.105101 [20] GANG R Q, XU L, XIA Y, et al. Fabrication of MoS2 QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal[J]. Journal of Colloid and Interface Science,2020,579:853-861. doi: 10.1016/j.jcis.2020.06.116 [21] GUAN Y, WU J, LIU Q Z, et al. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light[J]. Materials Research Bulletin,2019,120:110579. doi: 10.1016/j.materresbull.2019.110579 [22] QIANG T T, CHEN L, XIA Y J, et al. Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr(Ⅵ) reduction and dyes degradation[J]. Journal of Cleaner Production,2021,291:125213. doi: 10.1016/j.jclepro.2020.125213 [23] CAO D D, WANG Q Y, ZHU S X, et al. Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution[J]. Separation and Purification Technology,2021,265:118463. doi: 10.1016/j.seppur.2021.118463 [24] WANG X Y, YAO Y H, GAO W, et al. High-rate and high conductivity mesoporous TiO2 nano hollow spheres: synergetic effect of structure and oxygen vacancies[J]. Ceramics International,2021,47(10):13572-13581. doi: 10.1016/j.ceramint.2021.01.215 [25] ZHAO H X, CUI S, LI G D, et al. 1T- and 2H-mixed phase MoS2 nanosheets coated on hollow mesoporous TiO2 nanospheres with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2020,567:10-17. doi: 10.1016/j.jcis.2020.01.100 [26] LIU X F, XING Z P, ZHANG Y, et al. Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance[J]. Applied Catalysis B:Environmental,2017,201:119-127. doi: 10.1016/j.apcatb.2016.08.031 [27] TANG C M, ZHANG H Y, ZHANG J. Study on photocatalytic activity of MoS2/ZnO composite in visible light[J]. Optoelectronics Letters,2020,16(6):446-450. doi: 10.1007/s11801-020-9227-6 [28] MEI W, CHEN C S, CHEN X A, et al. Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight[J]. Journal of Colloid and Interface Science,2018,530:714-724. doi: 10.1016/j.jcis.2018.07.015 [29] KUMAR S, SHARMA V, BHATTACHARYYA K, et al. N-doped ZnO-MoS2 binary heterojunctions: the dual role of 2D MoS2 in the enhancement of photostability and photocatalytic activity under visible light irradiation for tetracycline degradation[J]. Materials Chemistry Frontiers,2017,1(6):1093-1106. doi: 10.1039/C6QM00274A [30] YU E J, KIM H C, KIM H J, et al. Anisotropic heteronanocrystals of Cu2O-2D MoS2 for efficient visible light driven photocatalysis[J]. Applied Surface Science,2021,538:148159. doi: 10.1016/j.apsusc.2020.148159 [31] AKBARZADEH E, RAHMAN SETAYESH S, GHOLAMI M R. Investigating the role of MoS2/reduced graphene oxide as cocatalyst on Cu2O activity in catalytic and photocatalytic reactions[J]. New Journal of Chemistry,2017,41(16):7998-8005. doi: 10.1039/C7NJ00528H [32] BEYHAQI A, ZENG Q Y, CHANG S, et al. Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light[J]. Chemosphere,2020,247:125784. doi: 10.1016/j.chemosphere.2019.125784 [33] ZENG Y, GUO N, XU X J, et al. Degradation of bisphenol a using peroxymonosulfate activated by WO3@MoS2/Ag hollow nanotubes photocatalyst[J]. Chemosphere,2019,227:589-597. doi: 10.1016/j.chemosphere.2019.04.067 [34] CHEN J L, LIAO Y, WAN X, et al. A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye[J]. Journal of Solid State Chemistry,2020,291:121652. doi: 10.1016/j.jssc.2020.121652 [35] HAO L, JU P, ZHANG Y, et al. Fabrication of hierarchical flower-like BiOI/MoS2 heterostructures with highly enhanced visible-light photocatalytic activities[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,610:125714. doi: 10.1016/j.colsurfa.2020.125714 [36] GUO S Y, LUO H H, LI Y, et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline[J]. Journal of Alloys and Compounds,2021,852:157026. doi: 10.1016/j.jallcom.2020.157026 [37] HOU Y D, LIU J S, LI Z Q, et al. Construction of novel BiOCl/MoS2 nanocomposites with Z-scheme structure for enhanced photocatalytic activity[J]. Materials Letters,2018,218:110-114. doi: 10.1016/j.matlet.2018.01.140 [38] WU D P, WANG X L, WANG H J, et al. Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light[J]. Journal of Colloid and Interface Science,2019,533:539-547. doi: 10.1016/j.jcis.2018.08.084 [39] DI J, XIA J X, GE Y P, et al. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres[J]. Dalton Trans,2014,43(41):15429-15438. doi: 10.1039/C4DT01652A [40] XIA J X, GE Y P, ZHAO D X, et al. Microwave-assisted synthesis of few-layered MoS2/BiOBr hollow microspheres with superior visible-light-response photocatalytic activity for ciprofloxacin removal[J]. CrystEngComm,2015,17(19):3645-3651. doi: 10.1039/C5CE00347D [41] YIN W Q, CAO X J, WANG B, et al. In-situ synthesis of MoS2/BiOBr material via mechanical ball milling for boosted photocatalytic degradation pollutants performance[J]. ChemistrySelect,2021,6(5):928-936. doi: 10.1002/slct.202004316 [42] RITIKA, KAUR M, UMAR A, et al. Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods[J]. Journal of Materials Science:Materials in Electronics,2019,30(23):20741-20750. doi: 10.1007/s10854-019-02441-3 [43] LÜ H, LIU Y M, TANG H B, et al. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles[J]. Applied Surface Science,2017,425:100-106. doi: 10.1016/j.apsusc.2017.06.303 [44] LI M J, WANG J Y, ZHANG P, et al. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory[J]. Scientific Reports,2017,7:42484. doi: 10.1038/srep42484 [45] LIU H Y, WU R, TIAN L, et al. The role of 1T@2H-MoS2 in improving the photocatalytic activity of Bi2S3[J]. Materials Letters,2019,246:214-218. doi: 10.1016/j.matlet.2019.03.023 [46] CHEN Y J, WANG G F, LI H L, et al. Controlled synthesis and exceptional photoelectrocatalytic properties of Bi2S3/MoS2/Bi2MoO6 ternary hetero-structured porous film[J]. Journal of Colloid and Interface Science,2019,555:214-223. doi: 10.1016/j.jcis.2019.07.097 [47] KE J, LIU J, SUN H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation[J]. Applied Catalysis B:Environmental,2017,200:47-55. doi: 10.1016/j.apcatb.2016.06.071 [48] WANG J Z, JIN J, WANG X G, et al. Facile fabrication of novel BiVO4/Bi2S3/MoS2 n-p heterojunction with enhanced photocatalytic activities towards pollutant degradation under natural sunlight[J]. Journal of Colloid and Interface Science,2017,505:805-815. doi: 10.1016/j.jcis.2017.06.085 [49] LI L Q, YIN D G, DENG L L, et al. Fabrication of a novel ternary heterojunction composite Ag2MoO4/Ag2S/MoS2 with significantly enhanced photocatalytic performance[J]. New Journal of Chemistry,2021,45(1):223-234. doi: 10.1039/D0NJ04290K [50] WU J, ZHOU Y F, NIE W Y, et al. One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications[J]. Journal of Nanoparticle Research,2018,20(1):1-13. doi: 10.1007/s11051-017-4105-2 [51] CHANG M J, CUI W N, LIU J, et al. One-step synthesis of magnetic recoverable Ag2S/Fe3O4/MoS2 nanocomposites for enhanced visible light photocatalysis[J]. Journal of Materials Science:Materials in Electronics,2020,31(2):1047-1056. doi: 10.1007/s10854-019-02615-z [52] LWIN H M, ZHAN W Q, JIA F F, et al. Microwave-assisted hydrothermal synthesis of MoS2-Ag3PO4 nanocomposites as visible light photocatalyst for the degradation of tetracycline hydrochloride[J]. Environmental Technology,2022,43(1):149-162. [53] SHARMA M, MOHAPATRA P K, BAHADUR D. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Frontiers of Materials Science,2017,11(4):366-374. doi: 10.1007/s11706-017-0404-x [54] CUI Z, SUN Y G, ZHANG Z D, et al. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth[J]. Materials Research Bulletin,2018,100:345-352. doi: 10.1016/j.materresbull.2018.01.003 [55] CHEN Y, SU P H, LIU X T, et al. One-pot synthesis of 3D Cu2S-MoS2 nanocomposites by an ionic liquid-assisted strategy with high photocatalytic activity[J]. New Journal of Chemistry,2019,43(1):269-276. doi: 10.1039/C8NJ05229H [56] SAJJAD M, TAHIR M B, MUBEEN I, et al. Tailorable and rationally designed MoS2 based heterostructure photocatalyst for efficient photocatalytic degradation of phenol under the visible light[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(10):3965-3972. doi: 10.1007/s10904-020-01538-1 [57] ZHANG X J, GUO Y C, TIAN J, et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J]. Applied Catalysis B:Environmental,2018,232:355-364. doi: 10.1016/j.apcatb.2018.03.074 [58] HARISH S, PRACHI, ARCHANA J, et al. Synergistic interaction of 2D layered MoS2/ZnS nanocomposite for highly efficient photocatalytic activity under visible light irradiation[J]. Applied Surface Science,2019,488:36-45. doi: 10.1016/j.apsusc.2019.05.027 [59] AKSHATHA R S, SREENIVASA S, PARASHURAM L, et al. Visible-light-induced photochemical hydrogen evolution and degradation of crystal violet dye by interwoven layered MoS2/wurtziteZnS heterostructure photocatalyst[J]. ChemistrySelect,2020,5(23):6918-6926. doi: 10.1002/slct.202001914 [60] HU X F, DENG F, HUANG W Y, et al. The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability[J]. Chemical Engineering Journal,2018,350:248-256. doi: 10.1016/j.cej.2018.05.182 [61] AHAMAD T, NAUSHAD M, AL-SAEEDI S I, et al. Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide[J]. Materials Letters,2020,263:127271. doi: 10.1016/j.matlet.2019.127271 [62] ALOMAR M, LIU Y L, CHEN W, et al. Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light[J]. Applied Surface Science,2019,480:1078-1088. doi: 10.1016/j.apsusc.2019.03.014 [63] ZHANG D T, XU T Y, CAO M Y, et al. Facile band alignment of C3N4/CdS/MoS2 sandwich hybrid for efficient charge separation and high photochemical performance under visible-light[J]. Powder Technology,2019,351:222-228. doi: 10.1016/j.powtec.2019.03.043 [64] ZHAO T, XING Z P, XIU Z Y, et al. Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance[J]. ACS Applied Materials & Interfaces,2019,11(7):7104-7111. [65] PANT B, PARK M, PARK S J. MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water[J]. Inorganic Chemistry Communications,2019,102:113-119. doi: 10.1016/j.inoche.2019.02.022 [66] PENG K, WANG H J, LI X Y, et al. One-step hydrothermal growth of MoS2 nanosheets/CdS nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity[J]. Applied Clay Science,2019,175:86-93. doi: 10.1016/j.clay.2019.04.007 [67] ACHARYA R, PARIDA K. A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation[J]. Journal of Environmental Chemical Engineering,2020,8(4):103896. doi: 10.1016/j.jece.2020.103896 [68] PATNAIK S, SAHOO D P, PARIDA K. Photo-catalytic H2 evolution over Au modified mesoporous g-C3N4[J]. Materials Today:Proceedings,2021,35:247-251. doi: 10.1016/j.matpr.2020.05.346 [69] PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: a review[J]. Carbon,2021,172:682-711. doi: 10.1016/j.carbon.2020.10.073 [70] YAN X, GAO Q, HUI X Y, et al. Fabrication of g-C3N4/MoS2 nanosheet heterojunction by facile ball milling method and its visible light photocatalytic performance[J]. Rare Metal Materials and Engineering,2018,47(10):3015-3020. doi: 10.1016/S1875-5372(18)30226-1 [71] TIAN J, CHEN Z Y, JING J P, et al. Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method[J]. Journal of Photochemistry and Photobiology A:Chemistry,2020,390:112260. doi: 10.1016/j.jphotochem.2019.112260 [72] CHEN W, LIU M, WEI S J, et al. Solid-state synthesis of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for excellent enhancement of visible light photoactivity[J]. Journal of Alloys and Compounds,2020,836:155401. doi: 10.1016/j.jallcom.2020.155401 [73] LI Y H, LAI Z, HUANG Z J, et al. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics[J]. Applied Surface Science,2021,550:149342. doi: 10.1016/j.apsusc.2021.149342 [74] CHAKRABARTY S, MUKHERJEE A, BASU S. RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5238-5247. ⊗
计量
- 文章访问数: 654
- HTML全文浏览量: 367
- PDF下载量: 116
- 被引次数: 0