留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车载测试的轻型汽车排放特征

陈婷 何潇 陈文倩 颜敏 徐光仪 郑轩

陈婷,何潇,陈文倩,等.基于车载测试的轻型汽车排放特征[J].环境工程技术学报,2022,12(4):1033-1040 doi: 10.12153/j.issn.1674-991X.20210256
引用本文: 陈婷,何潇,陈文倩,等.基于车载测试的轻型汽车排放特征[J].环境工程技术学报,2022,12(4):1033-1040 doi: 10.12153/j.issn.1674-991X.20210256
CHEN T,HE X,CHEN W Q,et al.Emission characteristics of light-duty vehicles based on portable emission measurement system (PEMS)[J].Journal of Environmental Engineering Technology,2022,12(4):1033-1040 doi: 10.12153/j.issn.1674-991X.20210256
Citation: CHEN T,HE X,CHEN W Q,et al.Emission characteristics of light-duty vehicles based on portable emission measurement system (PEMS)[J].Journal of Environmental Engineering Technology,2022,12(4):1033-1040 doi: 10.12153/j.issn.1674-991X.20210256

基于车载测试的轻型汽车排放特征

doi: 10.12153/j.issn.1674-991X.20210256
基金项目: 国家自然科学基金项目(51978404)
详细信息
    作者简介:

    陈婷(1997—),女,硕士,主要研究方向为机动车尾气有机物排放特征,chentingcjp@163.com

    通讯作者:

    郑轩(1983—),男,研究员,主要从事机动车排放特征与控制策略研究,x-zheng11@szu.edu.cn

  • 中图分类号: X51

Emission characteristics of light-duty vehicles based on portable emission measurement system (PEMS)

  • 摘要:

    选择11辆轻型汽车作为研究对象,利用车载测试系统(portable emission measurement system,PEMS)研究了轻型汽车气态污染物排放和油耗特征。结果表明:轻型汽车一氧化碳(carbon monoxide,CO)、氮氧化物(nitrogen oxides,NOx)和总碳氢化合物(total hydrocarbons,THC)的排放因子分别为(910.4±822.6)、(58.0±48.3)和(21.6±16.1)mg/km,且其排放速率随发动机比功率-速度(vehicle specific power-velocity,VSP-v)增大而增加,冷启动期间CO、NOx和THC的排放量占排放总量的11.2%±2.1%、3.7%±5.4%和52.7%±4.6%。轻型汽车瞬态油耗速率随VSP-v的增大而增加,车辆相对油耗在平均车速低于15 km/h时显著上升,车速在40 km/h以上时油耗随车速变化呈平稳的趋势。20 ℃时CO、NOx和THC排放速率高于1 ℃时的排放速率;1 ℃的环境温度使油耗速率增加,尤其在车辆高速行驶时,1 ℃时其油耗速率比20 ℃时高27.1%±24.5%。

     

  • 图  1  车辆排放测试系统示意

    Figure  1.  Schematic diagram of vehicle emission test system

    图  2  微观运行模态下CO、NOx和THC的排放速率

    Figure  2.  Emission rates of CO, NOx, and THC under micro-operating mode

    图  3  GDI和PFI车冷启动阶段CO、NOx和THC排放贡献

    Figure  3.  Emission contributions of CO, NOx, and THC for GDI and PFI vehicles in cold start phase

    图  4  GDI和PFI车辆在微观运行模态下的平均油耗速率

    Figure  4.  Average fuel consumption rates in micro-operating modes for GDI and PFI vehicles

    图  5  车辆平均速度和相对油耗因子的相关性

    Figure  5.  Correlations between averaged vehicle speeds and relative fuel consumption

    图  6  微观运行模态下不同环境温度的平均油耗速率

    Figure  6.  Average fuel consumption rates in micro-operating modes under different ambient temperatures

    表  1  测试车辆基本信息

    Table  1.   Details of tested vehicles

    车辆编号品牌生产年份排放标准后处理行驶里程/(103 km)排量/L整备质量/kg额定功率
    /kW
    喷油方式
    1#别克2006国2TWC1321.6122078PFI
    2#丰田2012国4TWC591.6130090PFI
    3#别克2017国5TWC581.5122581PFI
    4#别克2015国5TWC911.41430103PFI
    5#大众2016国5TWC1051.6126587PFI
    6#大众2014国4TWC291.81600118GDI
    7#东风2016国5TWC731.21305100GDI
    8#本田2018国5TWC111.5120596GDI
    9#雪佛兰2018国5TWC511.51520GDI
    10#福特2012国4TWC1311.81340PFI
    11#别克2015国4TWC1182.41595PFI
    下载: 导出CSV

    表  2  测试车辆在不同道路上的行驶里程和平均速度

    Table  2.   Mileage and average speed of tested vehicles on different roads

    车辆编号道路类型行驶里程/km平均速度/(km/h)车辆编号道路类型行驶里程/km平均速度/(km/h)
    1#城市道路15.2217#城市道路15.135
    市郊道路15.157市郊道路15.182
    高速路15.182高速路15.1100
    2#城市道路15.2138#城市道路15.138
    市郊道路15.147市郊道路15.276
    高速路15.382高速路15.1102
    3#城市道路15.1189#城市道路15.136
    市郊道路15.358市郊道路15.180
    高速路15.268高速路15.1102
    4#城市道路15.22810#
    城市道路15.227
    市郊道路15.369市郊道路15.271
    高速路15.294高速路15.385
    5#城市道路15.21911#城市道路15.319
    市郊道路15.365市郊道路15.244
    高速路15.262高速路15.180
    6#城市道路15.117
    市郊道路15.239
    高速路15.181
    下载: 导出CSV

    表  3  轻型汽车Bin划分方法

    Table  3.   Bin distributions of light vehicles in this study

    VSP/(kW/t)v/(km/h)
    <1.61.6~4040~80≥80
    ≤−4 Bin1(怠速) Bin11 Bin21 Bin35
    −4~−2 Bin1(怠速) Bin12 Bin22 Bin35
    −2~0 Bin1(怠速) Bin13 Bin23 Bin35
    0~2 Bin1(怠速) Bin14 Bin24 Bin35
    2~4 Bin1(怠速) Bin15 Bin25 Bin35
    4~6 Bin1(怠速) Bin16 Bin26 Bin36
    6~8 Bin1(怠速) Bin17 Bin27 Bin37
    8~10 Bin1(怠速) Bin18 Bin28 Bin38
    10~12 Bin1(怠速) Bin18 Bin29 Bin38
    12~14 Bin1(怠速) Bin18 Bin2X Bin39
    14~16 Bin1(怠速) Bin18 Bin2Y Bin39
    16~20 Bin1(怠速) Bin18 Bin2Y Bin3X
    >20 Bin1(怠速) Bin18 Bin2Y Bin3Y
    下载: 导出CSV

    表  4  本研究与其他研究气态污染物的排放因子

    Table  4.   Emission factors of gaseous pollutants from this study and other studies mg/km 

    测试方法CO NOxTHC数据来源
    车载测试910.4±822.658.0±48.321.6±16.1本研究
    台架测试983.2±114.830.9±47.240.6±45.1文献[26]
    台架测试713.3±460.086.8±49.272.3±47.9文献[27]
    台架测试375.9±98.621.9±15.454.5±25.5文献[28]
    下载: 导出CSV
  • [1] IODICE P, SENATORE A. Appraisal of pollutant emissions and air quality state in a critical Italian region: methods and results[J]. Environmental Progress & Sustainable Energy,2015,34(5):1497-1505.
    [2] TONG Z M, CHEN Y J, MALKAWI A, et al. Energy saving potential of natural ventilation in China: the impact of ambient air pollution[J]. Applied Energy,2016,179:660-668. doi: 10.1016/j.apenergy.2016.07.019
    [3] DROZD G T, ZHAO Y L, SALIBA G, et al. Detailed speciation of intermediate volatility and semivolatile organic compound emissions from gasoline vehicles: effects of cold-starts and implications for secondary organic aerosol formation[J]. Environmental Science & Technology,2019,53(3):1706-1714.
    [4] 生态环境部. 中国移动源环境管理年报[A]. 北京: 生态环境部, 2019.
    [5] MCCAFFERY C, ZHU H W, LI C G, et al. On-road gaseous and particulate emissions from GDI vehicles with and without gasoline particulate filters (GPFs) using portable emissions measurement systems (PEMS)[J]. Science of the Total Environment,2020,710:136366. doi: 10.1016/j.scitotenv.2019.136366
    [6] YANG Z W, LIU Y, WU L, et al. Real-world gaseous emission characteristics of Euro 6b light-duty gasoline- and diesel-fueled vehicles[J]. Transportation Research Part D:Transport and Environment,2020,78:102215. doi: 10.1016/j.trd.2019.102215
    [7] CHONG H S, KWON S, LIM Y, et al. Real-world fuel consumption, gaseous pollutants, and CO2 emission of light-duty diesel vehicles[J]. Sustainable Cities and Society,2020,53:101925. doi: 10.1016/j.scs.2019.101925
    [8] GRAHAM L. Chemical characterization of emissions from advanced technology light-duty vehicles[J]. Atmospheric Environment,2005,39(13):2385-2398. doi: 10.1016/j.atmosenv.2004.10.049
    [9] SINGH S. Comparison of fuel economy and gaseous emissions of gas-direct injection versus port fuel injection light duty vehicles based on real-world measurements[D]. North Carolina: North Carolina State University, 2018.
    [10] 王军方, 尹航, 王宏丽, 等.轻型汽油车国六标准可行性研究[J]. 环境工程技术学报,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091

    WANG J F, YIN H, WANG H L, et al. Study on probability of compliance with China 6 standard for the emission from light duty gasoline vehicles[J]. Iournal of Environmental Engineering Technology,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091
    [11] ZHAO F, LAI M C, HARRINGTON D L. Automotive spark-ignited direct-injection gasoline engines[J]. Progress in Energy and Combustion Science,1999,25(5):437-562. doi: 10.1016/S0360-1285(99)00004-0
    [12] WEILENMANN M, FAVEZ J Y, ALVAREZ R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories[J]. Atmospheric Environment,2009,43(15):2419-2429. doi: 10.1016/j.atmosenv.2009.02.005
    [13] CLAIROTTE M, ADAM T W, ZARDINI A A, et al. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline[J]. Applied Energy,2013,102:44-54. doi: 10.1016/j.apenergy.2012.08.010
    [14] YAO Z L, WANG Q D, HE K B, et al. Characteristics of real-world vehicular emissions in Chinese cities[J]. Journal of the Air & Waste Management Association (1995),2007,57(11):1379-1386.
    [15] ZHANG S J, WU Y, LIU H, et al. Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China[J]. Energy,2014,69:247-257. doi: 10.1016/j.energy.2014.02.103
    [16] YANG L, WU Y, LI J Q, et al. Mass concentrations and temporal profiles of PM10, PM2.5 and PM1 near major urban roads in Beijing[J]. Frontiers of Environmental Science & Engineering,2014,9(4):675-684.
    [17] WU Y, ZHANG S J, LI M L, et al. The challenge to NOx emission control for heavy-duty diesel vehicles in China[J]. Atmospheric Chemistry and Physics,2012,12(19):9365-9379. doi: 10.5194/acp-12-9365-2012
    [18] 环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法: GB 18352.6—2016[S]. 北京: 中国环境科学出版社, 2020.
    [19] LUJÁN J M, BERMÚDEZ V, DOLZ V, et al. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)[J]. Atmospheric Environment,2018,174:112-121. doi: 10.1016/j.atmosenv.2017.11.056
    [20] 国家发展和改革委员会. 轻型汽车燃料消耗量试验方法: GB/T 19233—2003[S]. 北京: 中国标准出版社, 2003.
    [21] IMÉNEZ-PALACIOS J L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing[D]. Massachusetts: Massachusetts Institute of Technology, 1999.
    [22] 杨柳含子. 基于车载诊断系统的机动车油耗与氮氧化物排放特征研究[D]. 北京: 清华大学, 2016: 20-23.
    [23] US Environmental Protection Agency. Development of emission rates for heavy-duty vehicles in the motor vehicle emissions simulator MOVES2010[R]. Washington DC: Office of Transportation and Air Quality, 2010: 11-12.
    [24] BISHOP G A, STEDMAN D H, BURGARD D A, et al. High-mileage light-duty fleet vehicle emissions: their potentially overlooked importance[J]. Environmental Science & Technology,2016,50(10):5405-5411.
    [25] BORKEN-KLEEFELD J, CHEN Y C. New emission deterioration rates for gasoline cars: results from long-term measurements[J]. Atmospheric Environment,2015,101:58-64. doi: 10.1016/j.atmosenv.2014.11.013
    [26] SALIBA G, SALEH R, ZHAO Y L, et al. Comparison of gasoline direct-injection (GDI) and port fuel injection (PFI) vehicle emissions: emission certification standards, cold-start, secondary organic aerosol formation potential, and potential climate impacts[J]. Environmental Science & Technology,2017,51(11):6542-6552.
    [27] WU X, ZHANG S J, GUO X, et al. Assessment of ethanol blended fuels for gasoline vehicles in China: fuel economy, regulated gaseous pollutants and particulate matter[J]. Environmental Pollution,2019,253:731-740. doi: 10.1016/j.envpol.2019.07.045
    [28] DARDIOTIS C, MARTINI G, MAROTTA A, et al. Low-temperature cold-start gaseous emissions of late technology passenger cars[J]. Applied Energy,2013,111:468-478. doi: 10.1016/j.apenergy.2013.04.093
    [29] MAHADEVAN G, SUBRAMANIAN S. Experimental investigation of cold start emission using dynamic catalytic converter with pre-catalyst and hot air injector on a multi cylinder spark ignition engine[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017.
    [30] WANG W, MCCOOL G, KAPUR N, et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd) Mn2O5 for NO oxidation in diesel exhaust[J]. Science,2012,337:832-835. doi: 10.1126/science.1225091
    [31] CHAN T W, MELOCHE E, KUBSH J, et al. Impact of ambient temperature on gaseous and particle emissions from a direct injection gasoline vehicle and its implications on particle filtration[J]. SAE International Journal of Fuels and Lubricants,2013,6(2):350-371. doi: 10.4271/2013-01-0527
    [32] COLE R L, POOLA R B, SEKAR R. Exhaust emissions of a vehicle with a gasoline direct-injection engine[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998.
    [33] ZHU R C, HU J N, BAO X F, et al. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures[J]. Environmental Pollution,2016,216:223-234. doi: 10.1016/j.envpol.2016.05.066
    [34] ZHENG X, WU Y, ZHANG S J, et al. Evaluating real-world emissions of light-duty gasoline vehicles with deactivated three-way catalyst converters[J]. Atmospheric Pollution Research,2018,9(1):126-132. doi: 10.1016/j.apr.2017.08.001
    [35] 王军方, 丁焰, 王爱娟, 等.北京机动车行驶工况研究[J]. 环境工程技术学报,2012,2(3):240-246. doi: 10.3969/j.issn.1674-991X.2012.03.037

    WANG J F, DING Y, WANG A J, et al. Study of vehicle driving cycle modes on road in Beijing[J]. Journal of Environmental Engineering Technology,2012,2(3):240-246. doi: 10.3969/j.issn.1674-991X.2012.03.037
    [36] National Research Council. Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles[M]. Washington DC: National Academies Press, 2015.
    [37] CONFER K A, KIRWAN J, ENGINEER N. Development and vehicle demonstration of a systems-level approach to fuel economy improvement technologies[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013.
    [38] KOBAYASHI S, PLOTKIN S, RIBEIRO S K. Energy efficiency technologies for road vehicles[J]. Energy Efficiency,2009,2(2):125-137. doi: 10.1007/s12053-008-9037-3
    [39] GONZÁLEZ PALENCIA J C, FURUBAYASHI T, NAKATA T. Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials[J]. Energy,2012,48(1):548-565. □ doi: 10.1016/j.energy.2012.09.041
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  176
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13

目录

    /

    返回文章
    返回