留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

技术生命周期评价进展及其在碳中和领域应用趋势分析

李媛媛 葛晓华 王文静 王顺扬 闫冠玉 李华 朱宇恩

李媛媛,葛晓华,王文静,等.技术生命周期评价进展及其在碳中和领域应用趋势分析[J].环境工程技术学报,2022,12(4):1048-1057 doi: 10.12153/j.issn.1674-991X.20210265
引用本文: 李媛媛,葛晓华,王文静,等.技术生命周期评价进展及其在碳中和领域应用趋势分析[J].环境工程技术学报,2022,12(4):1048-1057 doi: 10.12153/j.issn.1674-991X.20210265
LI Y Y,GE X H,WANG W J,et al.Progress of technology life cycle assessment and its application trends in carbon neutrality[J].Journal of Environmental Engineering Technology,2022,12(4):1048-1057 doi: 10.12153/j.issn.1674-991X.20210265
Citation: LI Y Y,GE X H,WANG W J,et al.Progress of technology life cycle assessment and its application trends in carbon neutrality[J].Journal of Environmental Engineering Technology,2022,12(4):1048-1057 doi: 10.12153/j.issn.1674-991X.20210265

技术生命周期评价进展及其在碳中和领域应用趋势分析

doi: 10.12153/j.issn.1674-991X.20210265
基金项目: 国家重点研发计划项目(2018YFC1803000);2021年度山西省政府重大决策咨询课题(ZB20211705)
详细信息
    作者简介:

    李媛媛(1997—),女,硕士研究生,主要从事温室气体排放核算与控制以及土壤污染治理与修复研究,974608914@qq.com

    通讯作者:

    朱宇恩(1976—),男,副教授,博士,主要从事温室气体排放核算与控制以及土壤污染治理与修复研究,zhuyuen@sxu.edu.cn

  • 中图分类号: X820.3

Progress of technology life cycle assessment and its application trends in carbon neutrality

  • 摘要:

    技术生命周期评价可为技术改进、科学决策及碳中和提供方法支撑。利用CiteSpace软件研究了近20年技术生命周期评价研究特点、变化趋势、重点领域、演进路径及其在碳中和领域的研究进展。结果表明:技术生命周期评价相关文献出版量整体呈上升趋势,2006年以后进入快速发展阶段;发文主要集中在工程学、生态学、环境科学、环境工程、其他理工学科、能源与燃料和绿色可持续发展技术等学科。生命周期评价的研究对象、评价方法及应用是近年来的研究热点,能源生产技术、碳足迹及废物处理技术是技术生命周期评价的研究重点,体系、模型、框架、不确定性等方面是评价方法完善要点,方法适用性开发和综合性评判成为后续发展方向,提高可持续、效能、决策支撑的有效性是提高生命周期评价技术应用的突破点。碳足迹的生命周期评价可用于指导碳中和目标的实现及路径选择,将其他评估方法与生命周期评估相结合正在成为一种趋势,可提升技术全面综合评估的准确性及有效性,为实现碳中和目标提供有效参考。

     

  • 图  1  2000—2019年TLCA相关文献历年发文量

    Figure  1.  Number of published literature in the TLCA field during 2000-2019

    图  2  2000—2019年TLCA领域中主要发文国家的文献计量网络图谱

    Figure  2.  Bibliometric network map of the major countries that issued articles in the TLCA field from 2000 to 2019

    图  3  2000—2019年TLCA领域关键词文献计量网络图谱

    Figure  3.  Bibliometric network map of keywords in the TLCA field from 2000 to 2019

    图  4  2000—2019年TLCA碳中和领域相关文献历年发文量

    Figure  4.  Number of documents published in the field of carbon neutrality related to the TLCA field during 2000-2019

    图  5  2000—2019年TLCA领域碳足迹文献关键词聚类时间线视图

    Figure  5.  Clustering time line view of key words of carbon footprint literature in the TLCA field from 2000 to 2019

    表  1  2000—2019年TLCA领域发文量前10的学科类别

    Table  1.   Top 10 discipline categories in the TLCA field during 2000-2019

    序号学科类别发文量/篇中心度
    1Engineering2 2010.46
    2Ecology1 6820.05
    3Environmental Sciences1 6510.06
    4Engineering, Environmental1 2410.05
    5Science & Technology: Other Topics1 1470.07
    6Energy & Fuels1 0870.51
    7Green & Sustainable Science & Technology1 0480.05
    8Engineering, Chemical4380.22
    9Chemistry3080.02
    10Materials Science2620.15
    下载: 导出CSV

    表  2  2000—2019年TLCA研究领域发文量前10的期刊

    Table  2.   Top 10 journals in the TLCA field during 2000-2019

    序号期刊名称所属学科发文量/篇被引次数中心度
    1Journal of Cleaner ProductionEnvironmental Sciences & Ecology;Environmental Sciences;Engineering, Environmental4791 8240.28
    2International Journal of Life Cycle AssessmentEnvironmental Sciences & Ecology;Environmental Sciences;Engineering, Environmental2291 4510.15
    3Renewable Sustainable Energy ReviewsEngineering;Energy & Fuels1511 3010.24
    4Applied EnergyEngineering;Energy & Fuels;Engineering, Chemical1461 1410.05
    5Environmental Science & TechnologyEnvironmental Sciences & Ecology;Engineering, Environmental;Environmental Sciences1171 5070.75
    6SustainabilityEnvironmental Sciences & Ecology;Green & Sustainable Science & Technology;Environmental Sciences;Engineering , Environmental1062610
    7EnergyEngineering;Energy & Fuels;Thermodynamics1001 2300.27
    8Journal of Industrial EcologyEnvironmental Sciences & Ecology;Green & Sustainable Science & Technology;Environmental Sciences;Engineering , Environmental818210.03
    9Resources Conservation And RecyclingEnvironmental Sciences & Ecology;Engineering,Environmental;Environmental Sciences717900.15
    10Energy PolicyEnergy & Fuels;Environmental Sciences621 0710.33
    下载: 导出CSV
  • [1] 黄晶.中国2060年实现碳中和目标亟需强化科技支撑[J]. 可持续发展经济导刊,2020(10):15-16.

    HUANG J. China's goal of carbon neutrality by 2060 needs to be reinforced by science and technology[J]. China Sustainability Tribune,2020(10):15-16.
    [2] GHISETTI C, QUATRARO F. Green technologies and environmental productivity: a cross-sectoral analysis of direct and indirect effects in Italian regions[J]. Ecological Economics,2017,132:1-13. doi: 10.1016/j.ecolecon.2016.10.003
    [3] BRÄNNLUND R, GHALWASH T, NORDSTRÖM J. Increased energy efficiency and the rebound effect: effects on consumption and emissions[J]. Energy Economics,2007,29(1):1-17. doi: 10.1016/j.eneco.2005.09.003
    [4] BROOKES L. The greenhouse effect: the fallacies in the energy efficiency solution[J]. Energy Policy,1990,18(2):199-201. doi: 10.1016/0301-4215(90)90145-T
    [5] CHANG Y A, HUANG R Z, RIES R J, et al. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China[J]. Energy,2015,86:335-343. doi: 10.1016/j.energy.2015.04.034
    [6] International Orgnaization for Standardization. Environmental management: life cycle assessment: priciples and framework: ISO 14040[S]. Geneva: International Orgnaization for Standardization, 2006.
    [7] MAHMUD R, MONI S M, HIGH K, et al. Integration of techno-economic analysis and life cycle assessment for sustainable process design: a review[J]. Journal of Cleaner Production,2021,317:128247. doi: 10.1016/j.jclepro.2021.128247
    [8] CHANG Y A, HUANG R Z, RIES R J, et al. Shale-to-well energy use and air pollutant emissions of shale gas production in China[J]. Applied Energy,2014,125:147-157. doi: 10.1016/j.apenergy.2014.03.039
    [9] WU J Z, KONG L L, WANG L H, et al. Life cycle assessment of a co-firing power generation system in China[J]. Journal of Biobased Materials and Bioenergy,2016,10(2):129-136. doi: 10.1166/jbmb.2016.1574
    [10] 王曰芬. 文献计量法与内容分析法的综合研究[D]. 南京: 南京理工大学, 2007.
    [11] 陈香, 李卫民, 刘勤.基于文献计量的近30年国内外土壤微生物研究分析[J]. 土壤学报,2020,57(6):1458-1470.

    CHEN X, LI W M, LIU Q. Bibliometric-based analysis of researches on soil microbes at home and abroad in the past 30 years[J]. Acta Pedologica Sinica,2020,57(6):1458-1470.
    [12] 张媛, 张艳杰, 朱静, 等.基于文献计量的湿地构建前沿进展[J]. 环境工程技术学报,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050

    ZHANG Y, ZHANG Y J, ZHU J, et al. A bibliometric analysis of the frontier progress in wetland construction[J]. Journal of Environmental Engineering Technology,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050
    [13] BOHN D, ROY-AIKINS J A. On appraising alternative power plant investment proposals: part 1. economic model[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2000,214(6):541-551. doi: 10.1243/0957650001538083
    [14] NAHLIK M J, KAEHR A T, CHESTER M V, et al. Goods movement life cycle assessment for greenhouse gas reduction goals[J]. Journal of Industrial Ecology,2016,20(2):317-328. doi: 10.1111/jiec.12277
    [15] KULCZYCKA J, LELEK Ł, LEWANDOWSKA A, et al. Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: the consequences of technological changes from 2010 to 2050[J]. Journal of Industrial Ecology,2016,20(2):304-316. doi: 10.1111/jiec.12369
    [16] BERGESEN J D, TÄHKÄMÖ L, GIBON T, et al. Potential long-term global environmental implications of efficient light-source technologies[J]. Journal of Industrial Ecology,2016,20(2):263-275. doi: 10.1111/jiec.12342
    [17] CUBI E, ZIBIN N F, THOMPSON S J, et al. Sustainability of rooftop technologies in cold climates: comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels[J]. Journal of Industrial Ecology,2016,20(2):249-262. doi: 10.1111/jiec.12269
    [18] BEUCKER S, BERGESEN J D, GIBON T. Building energy management systems: global potentials and environmental implications of deployment[J]. Journal of Industrial Ecology,2016,20(2):223-233. doi: 10.1111/jiec.12378
    [19] YU D J, XU Z S, PEDRYCZ W, et al. Information sciences 1968-2016: a retrospective analysis with text mining and bibliometric[J]. Information Sciences,2017,418/419:619-634. doi: 10.1016/j.ins.2017.08.031
    [20] GARVEY T, MOORE E A, BABBITT C W, et al. Comparing ecotoxicity risks for nanomaterial production and release under uncertainty[J]. Clean Technologies and Environmental Policy,2019,21(2):229-242. doi: 10.1007/s10098-018-1648-6
    [21] BIYIK E, ARAZ M, HEPBASLI A, et al. A key review of building integrated photovoltaic (BIPV) systems[J]. Engineering Science and Technology, an International Journal,2017,20(3):833-858. doi: 10.1016/j.jestch.2017.01.009
    [22] GÓRALCZYK M. Life-cycle assessment in the renewable energy sector[J]. Applied Energy,2003,75(3/4):205-211.
    [23] YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365. doi: 10.1016/S0921-8009(03)00188-5
    [24] 衡丽君. 生物质定向热解制多元醇燃料过程模拟及全生命周期碳足迹研究[D]. 南京: 东南大学, 2019.
    [25] 李金惠, 刘丽丽, 许晓芳.2019年固体废物处理利用行业发展评述及展望[J]. 中国环保产业,2020(3):15-18. doi: 10.3969/j.issn.1006-5377.2020.03.004

    LI J H, LIU L L, XU X F. Review and prospect of the development of solid waste treatment and utilization industry in 2019[J]. China Environmental Protection Industry,2020(3):15-18. doi: 10.3969/j.issn.1006-5377.2020.03.004
    [26] MARIA F D, SAETTA S, LEONARDI D. Life cycle assessment of a PPV plant applied to an existing SUW management system[J]. International Journal of Energy Research,2003,27(5):481-494. doi: 10.1002/er.890
    [27] CHRISTENSEN T H, DAMGAARD A, LEVIS J, et al. Application of LCA modelling in integrated waste management[J]. Waste Management,2020,118:313-322. doi: 10.1016/j.wasman.2020.08.034
    [28] WENTKER M, GREENWOOD M, ASABA M C, et al. A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies[J]. Journal of Energy Storage,2019,26:101022. doi: 10.1016/j.est.2019.101022
    [29] SORUNMU Y, BILLEN P, SPATARI S. A review of thermochemical upgrading of pyrolysis bio-oil: techno-economic analysis, life cycle assessment, and technology readiness[J]. GCB Bioenergy,2020,12(1):4-18. doi: 10.1111/gcbb.12658
    [30] CHAUVY R, MEUNIER N, THOMAS D, et al. Selecting emerging CO2 utilization products for short- to mid-term deployment[J]. Applied Energy,2019,236:662-680. doi: 10.1016/j.apenergy.2018.11.096
    [31] OH J, JUNG D, OH S H, et al. Design, simulation and feasibility study of a combined CO2 mineralization and brackish water desalination process[J]. Journal of CO2 Utilization,2019,34:446-464. doi: 10.1016/j.jcou.2019.07.004
    [32] ROY M, MOHANTY K. A comprehensive review on microalgal harvesting strategies: current status and future prospects[J]. Algal Research,2019,44:101683. doi: 10.1016/j.algal.2019.101683
    [33] ZHANG Y, KANG H, HOU H C, et al. Improved design for textile production process based on life cycle assessment[J]. Clean Technologies and Environmental Policy,2018,20(6):1355-1365. doi: 10.1007/s10098-018-1572-9
    [34] KANNAN R, LEONG K C, OSMAN R, et al. Life cycle energy, emissions and cost inventory of power generation technologies in Singapore[J]. Renewable and Sustainable Energy Reviews,2007,11(4):702-715. doi: 10.1016/j.rser.2005.05.004
    [35] WOLDT W E, DVORAK B I, DAHAB M F. Application of fuzzy set theory to industrial pollution prevention: production system modeling and life cycle assessment[J]. Soft Computing,2003,7(6):419-433. doi: 10.1007/s00500-002-0231-5
    [36] RASHEED R, KHAN N, YASAR A, et al. Design and cost-benefit analysis of a novel anaerobic industrial bioenergy plant in Pakistan[J]. Renewable Energy,2016,90:242-247. doi: 10.1016/j.renene.2016.01.008
    [37] CORONA B, SAN MIGUEL G. Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power[J]. The International Journal of Life Cycle Assessment,2019,24(8):1444-1460. doi: 10.1007/s11367-018-1568-z
    [38] MONI S M, MAHMUD R, HIGH K, et al. Life cycle assessment of emerging technologies: a review[J]. Journal of Industrial Ecology,2020,24(1):52-63. doi: 10.1111/jiec.12965
    [39] ONG M S, CHANG M Y, FOONG M J, et al. An integrated approach for sustainability assessment with hybrid AHP-LCA-PI techniques for chitosan-based TiO2 nanotubes production[J]. Sustainable Production and Consumption,2020,21:170-181. doi: 10.1016/j.spc.2019.12.001
    [40] COLLOTTA M, CHAMPAGNE P, TOMASONI G, et al. Critical indicators of sustainability for biofuels: an analysis through a life cycle sustainabilty assessment perspective[J]. Renewable and Sustainable Energy Reviews,2019,115:109358. doi: 10.1016/j.rser.2019.109358
    [41] 赵娟, 黄蓓佳, 柴径阳, 等.多晶硅光伏组件生产可持续性评价[J]. 环境科学研究,2016,29(10):1554-1559.

    ZHAO J, HUANG B J, CHAI J Y, et al. Sustainability assessment of China's multi-crystalline silicon photovoltaic modules production[J]. Research of Environmental Sciences,2016,29(10):1554-1559.
    [42] 王博. 秸秆能源化利用技术的综合评价研究: 基于模糊层次分析-VIKOR模型和生命周期可持续性评价[D]. 长春: 吉林大学, 2020.
    [43] ANSHASSI M, TOWNSEND T G. Reviewing the underlying assumptions in waste LCA models to identify impacts on waste management decision making[J]. Journal of Cleaner Production,2021,313:127913. doi: 10.1016/j.jclepro.2021.127913
    [44] BOHNES F A, HAUSCHILD M Z, SCHLUNDT J, et al. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development[J]. Reviews in Aquaculture,2019,11(4):1061-1079. doi: 10.1111/raq.12280
    [45] 郑秀君, 胡彬.我国生命周期评价(LCA)文献综述及国外最新研究进展[J]. 科技进步与对策,2013,30(6):155-160. doi: 10.6049/kjjbydc.2012020392

    ZHENG X J, HU B. Domestic literature review and the latest overseas research progress of life cycle assessment[J]. Science & Technology Progress and Policy,2013,30(6):155-160. doi: 10.6049/kjjbydc.2012020392
    [46] 杨健, 陆雍森, 施鼎方.运用生命周期分析(LCA)评估和选择废水处理工艺[J]. 工业用水与废水,2000,31(3):4-6. doi: 10.3969/j.issn.1009-2455.2000.03.002

    YANG J A, LU Y S, SHI D F. Application of life-cycle analysis (LCA) in evaluation and selection of wastewater treatment processes[J]. Industrial Water & Wastewater,2000,31(3):4-6. doi: 10.3969/j.issn.1009-2455.2000.03.002
    [47] 查京民, 张剑.应用LCA评价建筑工程对环境的影响[J]. 环境科学动态,2001,26(3):11-15.
    [48] 杨建新, 王如松, 刘晶茹.中国产品生命周期影响评价方法研究[J]. 环境科学学报,2001,21(2):234-237. doi: 10.3321/j.issn:0253-2468.2001.02.022

    YANG J X, WANG R S, LIU J R. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae,2001,21(2):234-237. doi: 10.3321/j.issn:0253-2468.2001.02.022
    [49] 刘夏璐, 王洪涛, 陈建, 等.中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报,2010,30(10):2136-2144.

    LIU X L, WANG H T, CHEN J, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae,2010,30(10):2136-2144.
    [50] 莫华, 张天柱.生命周期清单分析的数据质量评价[J]. 环境科学研究,2003,16(5):55-58. doi: 10.3321/j.issn:1001-6929.2003.05.015

    MO H, ZHANG T Z. Data quality assessment of life cycle inventory analysis[J]. Research of Environmental Sciences,2003,16(5):55-58. doi: 10.3321/j.issn:1001-6929.2003.05.015
    [51] RIDOUTT B, FANTKE P, PFISTER S, et al. Making sense of the minefield of footprint indicators[J]. Environmental Science & Technology,2015,49(5):2601-2603.
    [52] YANG E, OMAR MOHAMED H, PARK S G, et al. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies[J]. Bioresource Technology,2021,320:124363. doi: 10.1016/j.biortech.2020.124363
    [53] ZINI G, TARTARINI P. Hybrid systems for solar hydrogen: a selection of case-studies[J]. Applied Thermal Engineering,2009,29(13):2585-2595. doi: 10.1016/j.applthermaleng.2008.12.029
    [54] NAKAJIMA K, INO H, HALADA K.Life cycle assessment of beverage cans[J]. 日本金屬學會誌,2000,64(8):591-596.
    [55] AYCAGUER A C, LEV-ON M, WINER A M. Reducing carbon dioxide emissions with enhanced oil recovery projects: a life cycle assessment approach[J]. Energy & Fuels,2001,15(2):303-308.
    [56] LENZEN M, MUNKSGAARD J. Energy and CO2 life-cycle analyses of wind turbines: review and applications[J]. Renewable Energy,2002,26(3):339-362. doi: 10.1016/S0960-1481(01)00145-8
    [57] WEITZ K A, THORNELOE S A, NISHTALA S R, et al. The impact of municipal solid waste management on greenhouse gas emissions in the United States[J]. Journal of the Air & Waste Management Association,2002,52(9):1000-1011.
    [58] BERG S, KARJALAINEN T. Comparison of greenhouse gas emissions from forest operations in Finland and Sweden[J]. Forestry:an International Journal of Forest Research,2003,76(3):271-284. doi: 10.1093/forestry/76.3.271
    [59] GUSTAVSSON L, MADLENER R. CO2 mitigation costs of large-scale bioenergy technologies in competitive electricity markets[J]. Energy,2003,28(14):1405-1425. doi: 10.1016/S0360-5442(03)00126-9
    [60] CORTI A, LOMBARDI L. Biomass integrated gasification combined cycle with reduced CO2 emissions: performance analysis and life cycle assessment (LCA)[J]. Energy,2004,29(12/13/14/15):2109-2124.
    [61] MEIER P J, WILSON P P H, KULCINSKI G L, et al. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives[J]. Energy Policy,2005,33(9):1099-1108. doi: 10.1016/j.enpol.2003.11.009
    [62] van der GIESEN C, CUCURACHI S, GUINÉE J, et al. A critical view on the current application of LCA for new technologies and recommendations for improved practice[J]. Journal of Cleaner Production,2020,259:120904. doi: 10.1016/j.jclepro.2020.120904
    [63] BONOU A, LAURENT A, OLSEN S I. Life cycle assessment of onshore and offshore wind energy-from theory to application[J]. Applied Energy,2016,180:327-337. doi: 10.1016/j.apenergy.2016.07.058
    [64] ČUČEK L, KLEMEŠ J J, KRAVANJA Z. A review of footprint analysis tools for monitoring impacts on sustainability[J]. Journal of Cleaner Production,2012,34:9-20. doi: 10.1016/j.jclepro.2012.02.036
    [65] LOPES SILVA D A, de OLIVEIRA J A, SAAVEDRA Y M B, et al. Combined MFA and LCA approach to evaluate the metabolism of service polygons: a case study on a university campus[J]. Resources, Conservation and Recycling,2015,94:157-168. ⊕ doi: 10.1016/j.resconrec.2014.11.001
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  332
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 录用日期:  2021-12-22

目录

    /

    返回文章
    返回