留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水脱砷技术的研究现状及发展趋势

石乐琪 郭莉 吕晨阳 杜冬云

石乐琪,郭莉,吕晨阳,等.地下水脱砷技术的研究现状及发展趋势[J].环境工程技术学报,2022,12(5):1548-1554 doi: 10.12153/j.issn.1674-991X.20210284
引用本文: 石乐琪,郭莉,吕晨阳,等.地下水脱砷技术的研究现状及发展趋势[J].环境工程技术学报,2022,12(5):1548-1554 doi: 10.12153/j.issn.1674-991X.20210284
SHI L Q,GUO L,LÜ C Y,et al.Research status and development trend of the technology for arsenic removal from groundwater[J].Journal of Environmental Engineering Technology,2022,12(5):1548-1554 doi: 10.12153/j.issn.1674-991X.20210284
Citation: SHI L Q,GUO L,LÜ C Y,et al.Research status and development trend of the technology for arsenic removal from groundwater[J].Journal of Environmental Engineering Technology,2022,12(5):1548-1554 doi: 10.12153/j.issn.1674-991X.20210284

地下水脱砷技术的研究现状及发展趋势

doi: 10.12153/j.issn.1674-991X.20210284
基金项目: 湖北省重大科技创新项目(2019ACA156);湖北省重点研发计划项目(2020BCB062)
详细信息
    作者简介:

    石乐琪(1997—),女,硕士研究生,主要从事污染控制化学研究,1609509320@qq.com

    通讯作者:

    杜冬云(1963—),男,教授,主要从事污染控制化学研究,dydu666@mail.scuec.edu.cn

  • 中图分类号: X523

Research status and development trend of the technology for arsenic removal from groundwater

  • 摘要:

    为明确地下水脱砷技术研究现状及未来发展趋势,采用文献计量学方法统计分析了Web of Science(WoS)数据库中2008—2020年发表的关于地下水脱砷技术的文献资料,并从年度发文量、发文机构、发文期刊、发文作者以及论文关键词等方面进行分析。结果表明:WoS数据库中地下水脱砷技术方面的研究型论文共1 501篇,年度发文量总体呈上升趋势;中国、美国和印度为发文量排名前3的国家;共计1 503家研究机构、4 875名作者参与地下水脱砷技术研究,其中高等院校为主要研究机构,而高校教师与硕士、博士研究生则为研究的主力军;关键词分析表明,吸附和电絮凝技术是地下水脱砷的主流方法,其中零价铁材料作为吸附剂是贯穿2008—2020年的研究热点;通过突现分析得出,二元甚至多元氧化物和纳米复合材料的制备将成为未来地下水脱砷技术研究的热点方向。

     

  • 图  1  2008—2020年地下水脱砷技术研究的发文量及发文国家占比

    Figure  1.  Number of articles published and the proportion of published countriesin in the research field of groundwater arsenic removal technology from 2008 to 2020

    图  2  2008—2020年地下水脱砷技术研究机构共现图谱

    Figure  2.  Co-occurrence map of research institutes for groundwater arsenic removal technology from 2008 to 2020

    图  3  2008—2020年地下水脱砷技术研究相关作者发文情况共现图谱

    Figure  3.  Co-occurrence map of authors' papers on groundwater arsenic removal technology from 2008 to 2020

    表  1  2008—2020年发文量排名前5的国家及其发文量

    Table  1.   Top 5 countries and their annual number of publications from 2008 to 2020

    年份中国印度美国韩国澳大利亚
    20085122050
    20099121983
    201015221831
    201119171840
    201230211941
    201326212144
    201434182732
    201530202335
    201640262969
    201747151683
    201833161697
    2019463614816
    20203530191117
    下载: 导出CSV

    表  2  2008—2020年地下水脱砷技术研究发文量排名前10的期刊

    Table  2.   Top 10 journals in the number of articles published on groundwater arsenic removal technology from 2008 to 2020

    期刊名称发文
    量/篇
    发文量
    占比/%
    2020年影响因子科学网
    学科类别
    Journal of Hazardous Materials 94 6.26 9.04 工程技术
    Desalination and Water Treatment 60 4.00 0.85 工程技术
    Water Research 58 3.86 9.13 环境科学
    与生态学
    Chemical Engineering Journal 51 3.40 10.65 工程技术
    Chemosphere 48 3.20 5.78 环境科学与
    生态学
    Environmental Science & Technology 48 3.20 4.36 环境科学
    与生态学
    Environmental Science and Pollution Research 42 2.80 3.06 环境科学
    与生态学
    Science of the Total Environmental 41 2.73 6.55 环境科学
    与生态学
    Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances Environmental Engineering 28 1.87 0.97 环境科学
    与生态学
    RSC Advances 28 1.87 3.12 化学
    下载: 导出CSV

    表  3  2008—2020年地下水脱砷技术研究发文量排名前20的发文机构

    Table  3.   Top 20 institutions in the number of articles published in groundwater arsenic removal technology from 2008 to 2020

    机构名称发文量/篇占比/
    %
    排名
    英文名称中文名称
    Chinese Academy of Sciences 中国科学院 83 5.53 1
    China University of Geosciences 中国地质大学 52 3.46 2
    Indian Institute of Technology 印度理工学院 46 3.07 3
    Tongji University 同济大学 23 1.53 4
    Indian Institute of Technology 印度国立理工学院 18 1.20 5
    National University of Singapore 新加坡国立大学 16 1.07 6
    University Guanajuato 瓜纳华托大学 16 1.07 6
    Nanjing University 南京大学 15 1.00 8
    University of California, Berkeley 加州大学伯克利分校 15 1.00 8
    University of Chinese Academy of Sciences 中国科学院大学 15 1.00 8
    University of Science and Technology of China 中国科学技术大学 15 1.00 8
    University of Southern Queensland 南昆士兰大学 15 1.00 8
    Delft University of Technology 代尔夫特大学技术学院 14 0.93 13
    Taiwan University 台湾大学 14 0.93 13
    University of Belgrade 贝尔格莱德大学 14 0.93 13
    University of Novi Sad 诺维萨德大学 14 0.93 13
    US Environmental Protection Agency 美国国家环境保护局 14 0.93 13
    Central South University 中南大学 12 0.80 18
    Cheng Kung University 台湾成功大学 12 0.80 18
    Tsinghua University 清华大学 12 0.80 18
    下载: 导出CSV

    表  4  2008—2020年出现频次排名前20的地下水脱砷技术研究的关键词

    Table  4.   Keywords of groundwater arsenic removal technology with top 20 occurrences in 2008-2020

    排序关键词出现频次/次中心性
    英文名称中文名称
    1groundwater地下水9610.00
    2adsorption吸附7170.00
    3arsenic5390.00
    4drinking water饮用水4210.01
    5removal去除4210.00
    6water水资源3880.01
    7arsenic removal砷去除3700.01
    8aqueous solution水溶液3360.02
    9sorption吸附作用2990.02
    10iron铁矿2850.01
    11oxidation氧化2250.02
    12adsorbent吸附剂2110.02
    13kinetics动力学2050.02
    14As(Ⅲ)三价砷1990.02
    15nanoparticle纳米颗粒1510.02
    16contamination污染物1500.02
    17As(Ⅴ)五价砷1380.04
    18zero valent iron零价铁1240.04
    19remediation修复1210.04
    20speciation物种形成1200.02
    下载: 导出CSV

    表  5  2008—2020年地下水脱砷技术研究关键词突现图谱

    Table  5.   Keywords of groundwater arsenic removal technology from 2008 to 2020

    关键词年份突现图谱
    英文名称中文名称
    zerovalent iron零价铁2008—2010
    hydroxide羟化物2008—2011
    Bangladesh孟加拉国2008—2010
    phosphate磷酸2008—2009
    alumina氧化铝2008—2011
    carbonate碳酸盐2008—2011
    binary oxide二元氧化物2016—2020
    electrode电极2016—2020
    iron electrocoagulation铁电凝法2016—2018
    Fe(Ⅱ)二价铁2017—2018
    hexavalent chromium六价铬2017—2018
    in situ原位2017—2018
    Fe2017—2018
    graphene oxide石墨烯氧化物2017—2020
    pollution污染2017—2020
    contaminant污染物2017—2020
    biochar生物炭2018—2020
    adsorptive removal吸附去除2018—2020
    health risk健康风险2018—2020
    risk assessment风险评估2018—2020
    response surface methodology响应面法2018—2020
    methylene blue亚甲蓝2018—2020
    simultaneous removal同时去除2018—2020
    waste water废水2018—2020
    nanocomposite纳米复合材料2018—2020
    下载: 导出CSV
  • [1] SINHA D, PRASAD P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: a global public health challenge[J]. Journal of Applied Toxicology,2020,40(1):87-131. doi: 10.1002/jat.3823
    [2] CHEN Q Y, COSTA M. Arsenic: a global environmental challenge[J]. Annual Review of Pharmacology and Toxicology,2021,61:47-63. doi: 10.1146/annurev-pharmtox-030220-013418
    [3] ALKA S, SHAHIR S, IBRAHIM N, et al. Arsenic removal technologies and future trends: a mini review[J]. Journal of Cleaner Production,2021,278:123805. doi: 10.1016/j.jclepro.2020.123805
    [4] GHOSH S, DEBSARKAR A, DUTTA A. Technology alternatives for decontamination of arsenic-rich groundwater: a critical review[J]. Environmental Technology & Innovation,2019,13:277-303.
    [5] SIDDIQ O M, TAWABINI B S, SOUPIOS P, et al. Removal of arsenic from contaminated groundwater using biochar: a technical review[J]. International Journal of Environmental Science and Technology,2022,19(1):651-664. doi: 10.1007/s13762-020-03116-x
    [6] 郭丽, 王延荣.地下水污染环境评价探讨[J]. 当代化工研究,2021(13):129-130. doi: 10.3969/j.issn.1672-8114.2021.13.061

    GUO L, WANG Y R. Discussion on environmental assessment of groundwater pollution[J]. Modern Chemical Research,2021(13):129-130. doi: 10.3969/j.issn.1672-8114.2021.13.061
    [7] 王宝燕, 肖巍.地下水污染现状与防治对策研究[J]. 环境与发展,2020,32(10):38-39.

    WANG B Y, XIAO W. Study on the status quo of groundwater pollution and countermeasures[J]. Environment and Development,2020,32(10):38-39.
    [8] SHAJI E, SANTOSH M, SARATH K V, et al. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula[J]. Geoscience Frontiers,2021,12(3):101079. doi: 10.1016/j.gsf.2020.08.015
    [9] 生态环境部. 2018中国生态环境状况公报[A/OL]. (2019-05-29)[2021-06-02].https://www.mee.gov.cn/ywdt/tpxw/201905/t20190529_704841.shtml.
    [10] 曾祥裕, 张春燕.印度应对水危机的政策措施评析[J]. 南亚研究季刊,2015(2):84-93. doi: 10.13252/j.cnki.sasq.2015.02.012

    ZENG X Y, ZHANG C Y. Water crisis: the Indian response[J]. South Asian Studies Quarterly,2015(2):84-93. doi: 10.13252/j.cnki.sasq.2015.02.012
    [11] 环境保护部. 2016中国环境状况公报[A/OL]. (2017-06-05)[2021-06-02].https://www.mee.gov.cn/gkml/sthjbgw/qt/201706/t20170605_415442.htm.
    [12] SIK E, KOBYA M, DEMIRBAS E, et al. Combined effects of co-existing anions on the removal of arsenic from groundwater by electrocoagulation process: optimization through response surface methodology[J]. Journal of Environmental Chemical Engineering,2017,5(4):3792-3802. doi: 10.1016/j.jece.2017.07.004
    [13] MOHORA E, RONČEVIĆ S, AGBABA J, et al. Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process[J]. Journal of Environmental Chemical Engineering,2018,6(1):512-519. doi: 10.1016/j.jece.2017.12.042
    [14] CASTAÑEDA L F, COREÑO O, NAVA J L. Arsenic and hydrated silica removal from groundwater by electrocoagulation using an up-flow reactor in a serpentine array[J]. Journal of Environmental Chemical Engineering,2019,7(5):103353. doi: 10.1016/j.jece.2019.103353
    [15] GUO H M, STÜBEN D, BERNER Z, et al. Adsorption of arsenic species from water using activated siderite-hematite column filters[J]. Journal of Hazardous Materials,2008,151(2/3):628-635.
    [16] LI F L, GUO H M, ZHAO K, et al. Modeling transport of arsenic through modified granular natural siderite filters for arsenic removal[J]. Geoscience Frontiers,2019,10(5):1755-1764. doi: 10.1016/j.gsf.2018.12.002
    [17] CHENG Y, ZHANG S S, HUANG T L, et al. Arsenite removal from groundwater by iron-manganese oxides filter media: behavior and mechanism[J]. Water Environment Research,2019,91(6):536-545. doi: 10.1002/wer.1056
    [18] WU K, WANG M, LI A Z, et al. The enhanced As(Ⅲ) removal by Fe-Mn-Cu ternary oxide via synergistic oxidation: performances and mechanisms[J]. Chemical Engineering Journal,2021,406:126739. doi: 10.1016/j.cej.2020.126739
    [19] PAL M, CHAKRABORTTY S, NAYAK J, et al. Removing toxic contaminants from groundwater by graphene oxide nanocomposite in a membrane module under response surface optimization[J]. International Journal of Environmental Science and Technology,2019,16(8):4583-4594. doi: 10.1007/s13762-018-1924-3
    [20] CHOWDHURY T, ZHANG L, ZHANG J Q, et al. Removal of arsenic(Ⅲ) from aqueous solution using metal organic framework-graphene oxide nanocomposite[J]. Nanomaterials (Basel, Switzerland),2018,8(12):1062. doi: 10.3390/nano8121062
    [21] GIFFORD M, HRISTOVSKI K, WESTERHOFF P. Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater[J]. Science of the Total Environment,2017,601/602:1008-1014. doi: 10.1016/j.scitotenv.2017.05.126
    [22] CHOWDHURY S R, YANFUL E K. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal[J]. Journal of Environmental Management,2010,91(11):2238-2247. doi: 10.1016/j.jenvman.2010.06.003
    [23] GUZMÁN A, NAVA J L, COREÑO O, et al. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor[J]. Chemosphere,2016,144:2113-2120. doi: 10.1016/j.chemosphere.2015.10.108
    [24] NEMADE P D, KADAM A M, SHANKAR H S. Removal of iron, arsenic and coliform bacteria from water by novel constructed soil filter system[J]. Ecological Engineering,2009,35(8):1152-1157. doi: 10.1016/j.ecoleng.2009.03.013
    [25] YANG L, LI X K, CHU Z R, et al. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater[J]. Bioresource Technology,2014,156:384-388. doi: 10.1016/j.biortech.2014.01.067
    [26] SHAKYA A K, GHOSH P K. Concurrent removal of nitrate, arsenic and iron from simulated and real-life groundwater to meet drinking water standards: effects of operational and environmental parameters[J]. Journal of Environmental Management,2019,235:9-18.
    [27] THAKUR L S, MONDAL P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation[J]. Journal of Environmental Management,2017,190:102-112.
    [28] POONIA T, SINGH N, GARG M C. Contamination of arsenic, chromium and fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment[J]. International Journal of Environmental Science and Technology,2021,18(9):2891-2902. ◇ doi: 10.1007/s13762-020-03043-x
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  148
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01

目录

    /

    返回文章
    返回