Applicability evaluation of clean heating technologies in rural areas in northern China: a case study in Beijing
-
摘要:
为了切实改善区域大气环境质量,中国在北方地区大规模开展以煤改电、煤改气为主的农村清洁取暖改造工程,如何选择技术可行、经济上可接受的清洁取暖技术路径是清洁取暖改造可持续的关键问题。基于北京农村地区实地调研数据,从经济性和舒适性2个维度对4种农村清洁取暖技术进行适用性评价,总结出各种技术的适用条件,提出农村清洁取暖技术路径选择建议。结果表明:空气源热泵运行费用较低,舒适性较好,适合冬季温度不低于−20 ℃的各类区域;燃气壁挂炉运行费用略高于空气源热泵,舒适性较好,适合距离燃气管线或燃气站较近的平原、半山区地区,不同气候温度范围均适用;蓄能式电暖器运行费用较高,舒适性较差,适合冬季温度接近于城区的农村或城乡接合部、农宅面积较小的区域;地源热泵取暖最好结合政府资金支持项目实施,运行费用较低,舒适性较好,适合地质结构适宜建井,有足够空间进行地埋管的区域。建议农村清洁取暖工作立足长远,因地制宜地选择清洁取暖技术,着力降低农户清洁取暖运行成本,同时提高农村清洁取暖电力和天然气供应的可靠性。
Abstract:In order to effectively improve the regional atmospheric environmental quality, China has launched large-scale rural clean heating renovation projects in the northern region, mainly from coal to electricity and coal to gas. How to choose a technically feasible and economically acceptable clean heating technology path is a key issue for the sustainability of clean heating renovation. Based on field survey data in rural areas of Beijing, the applicability of four rural clean heating technologies was evaluated from two dimensions of economy and comfort, the applicable conditions of various technologies were summarized and the suggestions on the choice of rural clean heating technologies were proposed. The results showed that: The air source heat pump had low operating cost and good comfort, which was suitable for various areas where the temperature was not lower than −20 ℃ in winter. The gas wall-hung boiler operation cost was slightly higher than the air source heat pump and had good comfort, which was suitable for plain and semi-mountainous areas close to gas pipelines or gas stations, and it was applicable to various climate and temperature ranges. Energy storage heater had high operating costs and poor comfort, which was suitable for rural areas where the winter temperature was close to urban areas, or areas of urban-rural junctions and small farm houses. The ground-source heat pump was best implemented in conjunction with government-funded projects, with lower operating costs, better comfort, and was suitable for areas where the geological structure was suitable for well construction and there was enough space for underground pipes. It was suggested that the rural clean heating work should be based on the long-term perspective, select clean heating technologies according to local conditions, and strive to reduce the operation cost of clean heating for farmers, while improving the reliability of rural clean heating power and natural gas supply.
-
表 1 调研对象及使用的清洁取暖技术
Table 1. Respondents and the clean heating technologies used
区 村/社区 改造年份 清洁取暖技术 门头沟区 禅房村 2015 地源热泵 房山区 河口村 2014 燃气壁挂炉 襄驸马庄村 2014 蓄能式电暖器 杨驸马庄村 2014 蓄能式电暖器/空气源热泵 龙门台村 2013 空气源热泵 昌平区 辛店村 2013 燃气壁挂炉 麦庄村 2015 空气源热泵 桃峪口村 2015 蓄能式电暖器/空气源热泵 曹庄村 2015 燃气壁挂炉 平谷区 雕窝村 2014 蓄能式电暖器 东寺渠村 2014 空气源热泵 胜利街村 2015 空气源热泵 石景山区 陈家沟村 2014 蓄能式电暖器 模式口村 2015 蓄能式电暖器 坛峪村 2014 蓄能式电暖器 海淀区 北京市生态环境局宿舍 2015 空气源热泵 表 2 调研对象的基本信息
Table 2. Basic characteristics of surveyed households
项目 参数 占比/% 地理条件 平原 40.0(3 377) 山区 33.3(859) 半山区 26.7(2 322) 户均年收入/万元 <3.0 40.0 3.0~4.5 33.3 4.5~6.0 6.7 ≥6.0 20.0 建筑面积/m2 <100 55.8 100~200 39.5 ≥200 4.7 围护结构 三七墙 69.7 二四墙 28.0 其他 2.3 室内取暖末端形式 暖气片 65.1 地暖 27.9 风机盘管 7.0 注:括号内数字为户数。 表 3 不同清洁取暖技术的设备投资
Table 3. Equipment investment of different clean heating technologies
清洁取暖
技术村/社区 设备
价格/元用户初
投资/(元)单位面积平均初
投资/(元/m2)占户均年
收入比例/%补贴政策 空气源热泵 龙门台村、
杨驸马庄村14 000 0 0 0 政府出资改造 麦庄村 17 000~24 000 2 000~9 000 55 4.4~20.0 每户补助15 000元左右 桃峪口村 28 000~29 000 8 000~9 000 93.15 17.8~20.0 每户补助20 000元左右 东寺渠村 25 000~30 000 10 000 85.47 17.5 用户承担10 000元,剩余由政府承担 胜利街村 25 000~30 000 11 000 70.97 25.7 用户承担11 000元,剩余由政府承担,每户只能买1台 北京市生态
环境局宿舍0 0 0 政府出资改造 蓄能式
电暖器襄驸马庄村 3 000 1 800 27.69 5.6 政府补贴1 200元/台 杨驸马庄村 6 6001) 1 467 11.7 4.9 设备补贴总额的1/3,最高上限每台2 200元,每户补贴3台 雕窝村 1 600 1 600 72.73 1.5 电表之外部分的改造由政府承担,电表改造由用户承担 陈家沟村 6 5401) 1 453 41.51 6.1 设备补贴总额的1/3,补贴金额最高不超过2 200元 模式口村 6 5401) 1 453 24.97 1.2 设备补贴总额的1/3,补贴金额最高不超过2 200元 坛峪村 6 5401) 1 453 28.49 6.1 设备补贴总额的1/3,补贴金额最高不超过2 200元 燃气壁挂炉 河口村 10 000~15 000 10 000~15 000 41.67 13.9~20.8 无补贴 曹庄村 10 000 <1 000 0~6.67 0~3.6 政府补贴90%,村民自付10%,最多补贴13000元 辛店村 10 000~15 000 1 000~1 500 7.35 2.56~3.85 政府补贴90%,村民自付10% 地源热泵 禅房村 政府出资改造 1)为3台设备的价格。 表 4 不同清洁取暖技术的运行费用
Table 4. Operating costs of different clean heating technologies
清洁取暖技术 村/社区 单位面积取暖
费/(元/m2)占户均年
收入比
例/%原燃煤取暖费/
(元/m2)改造后取
暖费
变化/%补贴政策 补贴前 补贴后 空气源热泵 龙门台村 19.73 17.20 8.5 31.25 −45.0 21:00—次日06:00享受0.3元/(kW·h)的低谷电价 杨驸马庄村 18.36 16.00 8.5 32.05 −50.1 21:00—次日06:00享受0.3元/(kW·h)的低谷电价 麦庄村 65.15 56.78 11.2 34.23 65.9 21:00—次日06:00享受低谷电价0.3元/(kW·h),由市、区(县)两级财政再各补贴0.1元/(kW·h) 桃峪口村 28.52 24.86 5.1 22.99 8.1 21:00—次日06:00享受低谷电价0.3元/(kW·h),由市、区(县)两级财政再各补贴0.1元/(kW·h) 东寺渠村 41.30 35.99 7.3 46.36 −22.4 21:00—次日06:00享受试点低谷电价0.3元/(kW·h) 胜利街村 86.06 75.00 28.0 31.25 140 21:00—次日06:00享受试点低谷电价0.1元/(kW·h) 北京市生态环境局宿舍 21.69 补贴后电价为0.5元/(kW·h) 蓄能式电暖器 襄驸马庄村 74.42 74.42 10.9 31.07 139.5 无电价补贴,电价为0.485元/(kW·h) 杨驸马庄村 41.42 41.42 20.0 32.19 28.7 无电价补贴,电价0.485元/(kW·h) 雕窝村 164.76 143.59 2.8 62.18 130.9 21:00—次日06:00享受试点低谷电价0.3元/(kW·h) 陈家沟村 86.06 75.00 5.4 62.5 20.0 21:00—次日06:00享受试点低谷电价0.3元/(kW·h),由市、区(县)两级财政再各补贴0.1元/(kW·h) 模式口村 62.52 54.48 1.1 53.89 1.1 21:00—次日06:00享受试点低谷电价0.3元/(kW·h),由市、区(县)两级财政再各补贴0.1元/(kW·h) 坛峪村 78.55 68.46 5.4 58.46 17.1 21:00—次日06:00享受试点低谷电价0.3元/(kW·h),由市、区(县)两级财政再各补贴0.1元/(kW·h) 燃气壁挂炉 河口村 35.14 35.14 14.2 22.21 58.2 无补贴,燃气价为3.15元/m3 曹庄村 51.27 28.78 11.7 27.99 2.8 燃气价为2.28元/m3,取暖季由燃气公司和
镇政府各补贴0.5元/m3辛店村 38.97 35.89 15.4 29.82 20.4 燃气价为2.28元/m3,取暖季政府补贴0.18元/m3,
按户最多补贴306元地源热泵 禅房村 29.26 29.26 19.8 18.50 58.1 无补贴 表 5 不同清洁取暖技术的室内外温度
Table 5. Indoor and outdoor temperatures of different clean heating technologies
清洁取
暖技术村/社区 建筑面积/m2 取暖季室外平均温度/℃ 室外最低温度/℃ 室内温
度/℃空气源
热泵龙门台村 50~180
(墙体有保温层的占77.78%)−13 −20 17~20 杨驸马庄村 −5 −19 20 麦庄村 −4 −15 17~23 桃峪口村 −4 −13 18~24 北京市生态
环境局宿舍0 −15 20 东寺渠村 −10 −15 20~23 胜利街村 −10 −28 19~20 蓄能式
电暖器襄驸马庄村 10~140(平均为75.78) −7 −19 17~20 杨驸马庄村 −5 −15 16~17 雕窝村 −6 −17 20~26 陈家沟村 −10 −18 10~20 模式口村 0 −10 17~23 坛峪村 −7 −15 13~22 燃气
壁挂炉河口村 90~500(墙体有保温层的占55.56%) −6 −17 18~22 曹庄村 −3 −12 17~22 辛店村 −6 −16 19~22 地源
热泵禅房村 18~25 表 6 常见农村清洁取暖技术的适用条件
Table 6. Applicable conditions of common rural clean heating technologies
清洁取暖技术 室内温
度/℃适用面积/m2 投资(未补贴)/(元/套) 单位面积投资
费用1)/(元/m2)单位面积运行
费用/(元/m2)适用区域 空气源
热泵17~24 >85 20 000~35 00 100~150(10~15) 18~60(地暖+墙体保温层取暖费用能降到30以下,补贴后再降20%~30%) 冬季温度不低于−20 ℃的各类区域 蓄能式
电暖器13~26 单个房间面
积<201 800~3 200 90~110(50~70) 70~80(补贴后降低20%~30%) 冬季温度接近于城区的农村或城乡接合部 燃气壁
挂炉18~25 >60 10 000~15 000 100~150(10~15) 40~50(地暖末端可节约20%~30%) 距离燃气管线或燃气站较近的平原、半山区地区,不同气候温度范围均适用 地源热泵 18~25 >100 65 000~100 000 500(最好结合政府资金支持项目,如新农村建设、险村搬迁或改造等) 28~30(政府补贴后降到11~16) 具有适合打井的地质结构,有足够空间进行地埋管的区域 1)括号内数字为政府补贴后的投资费用。 -
[1] 支国瑞, 杨俊超, 张涛, 等.我国北方农村生活燃煤情况调查、排放估算及政策启示[J]. 环境科学研究,2015,28(8):1179-1185.ZHI G R, YANG J C, ZHANG T, et al. Rural household coal use survey, emission estimation and policy implications[J]. Research of Environmental Sciences,2015,28(8):1179-1185. [2] 魏楚, 王丹, 吴宛忆, 等.中国农村居民煤炭消费及影响因素研究[J]. 中国人口·资源与环境,2017,27(9):178-185.WEI C, WANG D, WU W Y, et al. Residential coal consumption and its determinants in rural China[J]. China Population, Resources and Environment,2017,27(9):178-185. [3] CHEN D S, LIU X X, LANG J L, et al. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain[J]. Science of the Total Environment,2017,583:280-291. doi: 10.1016/j.scitotenv.2017.01.066 [4] ZHOU Y, ZI T, LANG J L, et al. Impact of rural residential coal combustion on air pollution in Shandong, China[J]. Chemosphere,2020,260:127517. doi: 10.1016/j.chemosphere.2020.127517 [5] ZHANG F, SHANG X N, CHEN H, et al. Significant impact of coal combustion on VOCs emissions in winter in a North China rural site[J]. Science of the Total Environment,2020,720:137617. doi: 10.1016/j.scitotenv.2020.137617 [6] LIU K K, REN J E. Characteristics, sources and health risks of PM2.5-bound potentially toxic elements in the northern rural China[J]. Atmospheric Pollution Research,2019,10(5):1621-1626. doi: 10.1016/j.apr.2019.06.002 [7] CHEN Y L, SHEN H Z, SMITH K R, et al. Estimating household air pollution exposures and health impacts from space heating in rural China[J]. Environment International,2018,119:117-124. doi: 10.1016/j.envint.2018.04.054 [8] 柴发合, 薛志钢, 支国瑞, 等.农村居民散煤燃烧污染综合治理对策[J]. 环境保护,2016,44(6):15-19. doi: 10.14026/j.cnki.0253-9705.2016.06.002CHAI F H, XUE Z G, ZHI G R, et al. Complex control measures of rural coal combustion pollution[J]. Environmental Protection,2016,44(6):15-19. doi: 10.14026/j.cnki.0253-9705.2016.06.002 [9] 杜晓林, 冯相昭, 王敏, 等.北方地区清洁取暖的影响因素及污染物减排贡献分析[J]. 环境与可持续发展,2020,45(3):16-20.DU X L, FENG X Z, WANG M, et al. Analysis on influencing factors of clean heating in North China and contribution of pollutant emission reduction[J]. Environment and Sustainable Development,2020,45(3):16-20. [10] 庞卫科, 吕连宏, 罗宏.适用于我国农村地区的低温空气源热泵采暖技术[J]. 环境工程技术学报,2017,7(3):382-387. doi: 10.3969/j.issn.1674-991X.2017.03.053PANG W K, LÜ L H, LUO H. Heating by air-source heat pump for cold climate in Chinese rural regions[J]. Journal of Environmental Engineering Technology,2017,7(3):382-387. doi: 10.3969/j.issn.1674-991X.2017.03.053 [11] LI Y E, YUAN X L, TANG Y Z, et al. Integrated assessment of the environmental and economic effects of "coal-to-gas conversion" project in rural areas of Northern China[J]. Environmental Science and Pollution Research International,2020,27(13):14503-14514. doi: 10.1007/s11356-020-08004-y [12] 赵文瑛, 于长友, 唐飞, 等.北方地区冬季清洁取暖进展及展望[J]. 石油规划设计,2020,31(3):18-22. doi: 10.3969/j.issn.1004-2970.2020.03.005ZHAO W Y, YU C Y, TANG F, et al. Progress and prospects of clean heating in winter seasons in North China[J]. Petroleum Planning & Engineering,2020,31(3):18-22. doi: 10.3969/j.issn.1004-2970.2020.03.005 [13] VAAGE K. Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand[J]. Energy Economics,2000,22(6):649-666. doi: 10.1016/S0140-9883(00)00053-0 [14] MAHAPATRA K, GUSTAVSSON L. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden[J]. Energy Policy,2008,36(2):577-590. doi: 10.1016/j.enpol.2007.10.006 [15] ROUVINEN S, MATERO J. Stated preferences of finnish private homeowners for residential heating systems: a discrete choice experiment[J]. Biomass and Bioenergy,2013,57:22-32. doi: 10.1016/j.biombioe.2012.10.010 [16] BRAUN F G. Determinants of households' space heating type: a discrete choice analysis for German households[J]. Energy Policy,2010,38(10):5493-5503. doi: 10.1016/j.enpol.2010.04.002 [17] DECKER T, MENRAD K. House owners' perceptions and factors influencing their choice of specific heating systems in Germany[J]. Energy Policy,2015,85:150-161. doi: 10.1016/j.enpol.2015.06.004 [18] 单明, 刘彦青, 孙涛, 等.北方农村清洁取暖区域性典型案例实施方案及经验总结[J]. 环境与可持续发展,2020,45(3):50-56.SHAN M, LIU Y Q, SUN T, et al. Implementation scheme and experience summary of regional typical cases of clean heating in northern rural China[J]. Environment and Sustainable Development,2020,45(3):50-56. [19] 刘幼农, 梁传志, 程杰, 等.北方地区冬季清洁取暖试点城市工作成效与经验做法[J]. 建设科技,2019(10):10-13.LIU Y N, LIANG C Z, CHENG J, et al. Effectiveness and experience of clean heating pilot cities in North China[J]. Construction Science and Technology,2019(10):10-13. [20] 徐银鸿, 李闯, 张文廷, 等.中国北方典型地区农村清洁取暖调研分析及思考[J]. 农学学报,2020,10(3):31-37. doi: 10.11923/j.issn.2095-4050.cjas2020.03.031XU Y H, LI C, ZHANG W T, et al. Current status and implication of clean energy heating: field survey in typical areas of rural Northern China[J]. Journal of Agriculture,2020,10(3):31-37. doi: 10.11923/j.issn.2095-4050.cjas2020.03.031 [21] 罗宏, 张保留, 王健, 等.京津冀及周边地区清洁取暖补贴政策现状、问题与对策[J]. 中国环境管理,2020,12(2):34-41.LUO H, ZHANG B L, WANG J, et al. Current situation, problems and countermeasures of subsidy policy for clean heating in Beijing-Tianjin-Hebei and surrounding areas[J]. Chinese Journal of Environmental Management,2020,12(2):34-41. [22] 张保留, 罗宏, 吕连宏, 等.京津冀区域清洁取暖的支付意愿和影响因素[J]. 中国环境科学,2021,41(1):490-496. doi: 10.3969/j.issn.1000-6923.2021.01.055ZHANG B L, LUO H, LÜ L H, et al. The willingness to pay for clean heating and its influencing factors in the Beijing-Tianjin-Hebei Region[J]. China Environmental Science,2021,41(1):490-496. doi: 10.3969/j.issn.1000-6923.2021.01.055 [23] MAHAPATRA K, GUSTAVSSON L. Influencing Swedish homeowners to adopt district heating system[J]. Applied Energy,2009,86(2):144-154. doi: 10.1016/j.apenergy.2008.03.011 [24] YAN Y T, JIAO W X, WANG K, et al. Coal-to-gas heating compensation standard and willingness to make clean energy choices in typical rural areas of Northern China[J]. Energy Policy,2020,145:111698. doi: 10.1016/j.enpol.2020.111698 [25] 谢伦裕, 常亦欣, 蓝艳.北京清洁取暖政策实施效果及成本收益量化分析[J]. 中国环境管理,2019,11(3):87-93.XIE L Y, CHANG Y X, LAN Y. The effectiveness and cost-benefit analysis of clean heating program in Beijing[J]. Chinese Journal of Environmental Management,2019,11(3):87-93. [26] 宋玲玲, 武娟妮, 王兆苏, 等.农村清洁取暖工程财政运行补贴理论退出年限测算及政策建议[J]. 地方财政研究,2020(11):90-95. [27] 郝春旭, 璩爱玉, 董战峰, 等.北方地区清洁取暖环境补贴政策研究[J]. 生态经济,2020,36(4):150-155.HAO C X, QU A Y, DONG Z F, et al. Study on subsidy policy of clean heating environment in North China[J]. Ecological Economy,2020,36(4):150-155. [28] 樊金璐.基于用户可承受能力的清洁取暖技术经济性评价[J]. 煤炭经济研究,2019,39(1):39-44.FAN J L. Economic evaluation of clean heating technology based on user's affordability[J]. Coal Economic Research,2019,39(1):39-44. [29] 刘幼农, 侯隆澍.北京市山区农村清洁取暖适宜技术路径研究[J]. 建筑科学,2019,35(6):128-134.LIU Y N, HOU L S. Research on the suitable technology paths of clean heating in mountainous countryside of Beijing[J]. Building Science,2019,35(6):128-134. [30] 崔艳梅, 刘洋, 李影, 等.北方农村地区清洁取暖技术应用及效果分析[J]. 建设科技,2020(2):42-45.CUI Y M, LIU Y, LI Y, et al. Implementation and effect analysis of clean heating technologies in northern rural area[J]. Construction Science and Technology,2020(2):42-45. [31] 赵利, 赵海春, 蔡英华, 等.农村牧区清洁能源采暖技术集成模式与节能效果[J]. 农业工程技术,2021,41(11):53-54. doi: 10.16815/j.cnki.11-5436/s.2021.11.032 [32] 赵俊兰, 龚娴, 孙鹏程, 等.我国北方农村地区的供暖形式比较[J]. 节能,2019,38(6):161-164. doi: 10.3969/j.issn.1004-7948.2019.06.068ZHAO J L, GONG X, SUN P C, et al. Comparison of heating forms in rural areas of Northern China[J]. Energy Conservation,2019,38(6):161-164. doi: 10.3969/j.issn.1004-7948.2019.06.068 [33] 赵文瑛, 邓高峰, 关运龙, 等.农村地区清洁取暖技术路线成本效益分析[J]. 石油规划设计,2020,31(5):41-44. doi: 10.3969/j.issn.1004-2970.2020.05.011ZHAO W Y, DENG G F, GUAN Y L, et al. Cost and environmental benefit analysis of clean heating technologies in northern rural area[J]. Petroleum Planning & Engineering,2020,31(5):41-44. doi: 10.3969/j.issn.1004-2970.2020.05.011 [34] 周淑慧, 孙慧, 王晨龙, 等.政策驱动下的中国北方农村地区清洁取暖方式[J]. 天然气工业,2020,40(3):146-156. doi: 10.3787/j.issn.1000-0976.2020.03.018ZHOU S H, SUN H, WANG C L, et al. Policy-driven clean heating modes in the rural areas of the Northern China[J]. Natural Gas Industry,2020,40(3):146-156. doi: 10.3787/j.issn.1000-0976.2020.03.018 [35] 徐伟, 袁闪闪, 孙峙峰, 等.清洁取暖技术应用适宜性研究[J]. 建筑科学,2018,34(12):1-5. doi: 10.13614/j.cnki.11-1962/tu.2018.12.01XU W, YUAN S S, SUN Z F, et al. Study on the suitability of clean heating technical method[J]. Building Science,2018,34(12):1-5. doi: 10.13614/j.cnki.11-1962/tu.2018.12.01 [36] 侯建军, 付喜亮, 郝薛刚, 等.蓄热式电锅炉技术在新能源富集电网中的应用探讨[J]. 内蒙古电力技术,2021,39(3):19-24. doi: 10.19929/j.cnki.nmgdljs.2021.0049HOU J J, FU X L, HAO X G, et al. Discussion on application of regenerative electric boiler technology in new energy riched power grid[J]. Inner Mongolia Electric Power,2021,39(3):19-24. doi: 10.19929/j.cnki.nmgdljs.2021.0049 [37] 韩韬, 刘芳, 王强.低温空气源热泵热风机分散采暖分析[J]. 区域供热,2019(6):59-64.HAN T, LIU F, WANG Q. Study on distributed heating of low temperature air source heat pump hot air blower[J]. District Heating,2019(6):59-64. [38] 杨灵艳, 刘宝红.地源热泵在清洁取暖中应用案例分析[J]. 区域供热,2018(3):13-21. doi: 10.16641/j.cnki.cn11-3241/tk.2018.03.003 [39] 刘庆玉, 关琦, 张敏, 等.北方典型农村住宅太阳能辅助采暖优化设计[J]. 可再生能源,2020,38(4):447-452. doi: 10.3969/j.issn.1671-5292.2020.04.004LIU Q Y, GUAN Q, ZHANG M, et al. Optimum design of solar energy-assisted heating for typical rural residential buildings in North China[J]. Renewable Energy Resources,2020,38(4):447-452. doi: 10.3969/j.issn.1671-5292.2020.04.004 [40] 单明, 张双奇, 邓梦思, 等.生物质成型燃料用于北方村镇清洁取暖的技术与模式[J]. 区域供热,2018(1):6-10. [41] 侯隆澍, 刘幼农.北京市冬季清洁取暖的演变与发展研究[J]. 建设科技,2019(2):11-16.HOU L S, LIU Y N. Study on the development and evolution of clean heating in winter of Beijing[J]. Construction Science and Technology,2019(2):11-16. □
计量
- 文章访问数: 404
- HTML全文浏览量: 209
- PDF下载量: 41
- 被引次数: 0