留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天津市近岸海域水质变化趋势分析及水质目标研究

许自舟 李亚芳 程嘉熠 吉志新 张晓霞 林建国

许自舟,李亚芳,程嘉熠,等.天津市近岸海域水质变化趋势分析及水质目标研究[J].环境工程技术学报,2022,12(5):1378-1388 doi: 10.12153/j.issn.1674-991X.20210302
引用本文: 许自舟,李亚芳,程嘉熠,等.天津市近岸海域水质变化趋势分析及水质目标研究[J].环境工程技术学报,2022,12(5):1378-1388 doi: 10.12153/j.issn.1674-991X.20210302
XU Z Z,LI Y F,CHENG J Y,et al.Trends analysis and targets study of the water quality in Tianjin coastal waters[J].Journal of Environmental Engineering Technology,2022,12(5):1378-1388 doi: 10.12153/j.issn.1674-991X.20210302
Citation: XU Z Z,LI Y F,CHENG J Y,et al.Trends analysis and targets study of the water quality in Tianjin coastal waters[J].Journal of Environmental Engineering Technology,2022,12(5):1378-1388 doi: 10.12153/j.issn.1674-991X.20210302

天津市近岸海域水质变化趋势分析及水质目标研究

doi: 10.12153/j.issn.1674-991X.20210302
基金项目: 国家重点研发计划项目(2019YFC1407700, 2018YFC1407603);天津市科技兴海项目(KJXH2013-17)
详细信息
    作者简介:

    许自舟(1977—),男,博士,主要研究方向为环境规划与管理,zzxu@nmemc.org.cn

    通讯作者:

    林建国(1960—),男,教授,主要研究方向为海洋环境污染与修复,ljglin@dlmu.edu.cn

  • 中图分类号: X55

Trends analysis and targets study of the water quality in Tianjin coastal waters

  • 摘要:

    掌握海域水质变化趋势、制定科学合理的水质目标,有助于精准实施重点海域排污总量控制,制定有效的污染物管控政策。利用广义加性模型(GAM),基于2007—2018年天津市近岸海域营养盐浓度及降水量数据,建立水质变化趋势分析模型和水质目标确定方法,在评估天津市近岸海域12个监测站位无机氮和活性磷酸盐浓度变化趋势的基础上,提出天津市近岸海域水质控制目标,并分析水质目标的合理性和可达性。结果表明:2013—2018年与2007—2012年相比,天津市近岸海域无机氮浓度总体呈下降趋势,下降比例为13.19%,95%的置信区间为−30.37%~3.96%;活性磷酸盐浓度总体呈上升趋势,上升比例为7.01%,95%的置信区间为−11.43%~25.45%,尚未恢复到2007—2012年的平均水平;提出2025年天津市近岸海域无机氮、活性磷酸盐二者综合优良水质比例达到75%的控制目标;将天津市近岸海域划分成7个区域,建议据此实施海域水质分区管理,进一步加强农业面源污染防治,强化流域上下游协同治理和省际水污染联防联治,持续改善天津市近岸海域水质。

     

  • 图  1  研究区及监测站位分布

    Figure  1.  Study area and monitoring stations distribution

    图  2  水质目标确定流程

    Figure  2.  Water quality target determination process

    图  3  2007—2018年无机氮、活性磷酸盐浓度变化趋势

    注:绿色三角形表示P≤0.05(显著);黄色三角形表示0.05<P≤0.25(可能);红色三角形表示P>0.25(不确定)。

    Figure  3.  Variation of concentration of inorganic nitrogen and reactive phosphorus in 2007-2018

    图  4  2007—2018年各监测站位无机氮模型模拟浓度随时间变化趋势

    Figure  4.  Variation of simulated concentration of inorganic nitrogen with time at each monitoring station in 2007-2018

    图  5  2007—2018年各监测站位活性磷酸盐模拟浓度时间变化趋势

    Figure  5.  Variation of simulated concentration of reactive phosphorus with time at each monitoring station in 2007-2018

    图  6  2025年天津市近岸海域水质目标空间分布

    Figure  6.  Spatial distribution of water quality targets in Tianjin's coastal waters in 2025

    图  7  天津市海洋功能区划及近岸海域环境功能区划要求的水质目标

    Figure  7.  Water quality targets required by Tianjin marine functional zoning and coastal marine environmental functional division

    图  8  不同时间段无机氮、活性磷酸盐浓度变化率

    注:浓度变化率是本阶段相较上阶段浓度的变化,如2011—2015年与2006—2010年相比,无机氮、活性磷酸盐平均浓度变化百分比。

    Figure  8.  Change percentage of inorganic nitrogen and active phosphate concentration in different time periods

    图  9  天津市近岸海域水质分区管控

    Figure  9.  Zoning management map of water quality in the coastal waters of Tianjin

    表  1  天津市近岸海域水质控制区分级

    Table  1.   Classification of water quality control areas in the coastal waters of Tianjin

    控制区等级分级原则
    优先控制区 未来5年水质呈恶化趋势,且水质预测均值超出二类水质标准(“超二类”)
    重点控制区 未来5年水质呈向好趋势,但前5年水质均值为“超二类”;或未来5年水质呈恶化趋势,且水质预测均值为二类水质
    一般控制区 未来5年水质呈向好趋势,前5年水质均值为二类水质,且稳定;或未来5年水质呈向好趋势,前5年水质均值为一类水质,但其中至少1年出现“超二类”水质;或未来5年水质呈恶化趋势,但水质预测均值为一类水质
    维持现状区 前5年水质优良、稳定,且未来5年水质呈向好趋势
    下载: 导出CSV

    表  2  模型模拟及验证结果

    Table  2.   Model simulation and verification results

    监测站位无机氮活性磷酸盐
    R2 AdjDE2019—2020年误差均值/%R2 AdjDE2019—2020年误差均值/%
    B038 0.57 0.61 24.36 0.89 0.93 −6.41
    B0390.570.6149.210.970.9971.40
    B0400.780.8019.190.660.72−8.22
    B0410.800.877.160.660.80−76.17
    B0420.480.6140.200.940.97−79.03
    B0430.940.9713.970.490.59102.93
    B0440.710.8061.170.490.5838.86
    B0450.860.910.810.89
    B0780.680.73−18.300.930.97174.63
    B4100.820.8951.290.920.9867.28
    B4110.830.8969.790.920.96−39.90
    B4160.500.63127.730.820.90−10.88
    平均值0.710.7840.520.790.8621.32
    注:—表示无实测数据。
    下载: 导出CSV

    表  3  2025年天津市近岸海域监测站位水质目标及控制等级

    Table  3.   Results of water quality objectives and control classification in Tianjin's coastal waters in 2025 mg/L 

    监测站位无机氮浓度活性磷酸盐浓度
    2016—2020年
    实测均值
    2021—2025年
    预测均值
    2025年
    目标值
    控制
    区等级
    2016—2020年
    实测均值
    2021—2025年
    预测均值
    2025年
    目标值
    控制
    区等级
    B038 0.25 0.20 0.20一般 0.015 0.006 0.015一般
    B0390.340.280.28重点0.0130.0200.013重点
    B0400.300.210.21一般0.0080.0020.008现状
    B0410.300.220.22重点0.011<0.0010.011现状
    B0420.270.290.27重点0.005<0.0010.005现状
    B0430.280.210.21一般0.0080.0040.008现状
    B0440.250.220.22重点0.0100.0050.010现状
    B0450.460.680.46优先0.0070.0010.007现状
    B0780.220.130.20现状0.0090.0020.009现状
    B4100.370.330.33重点0.0050.0270.005重点
    B4110.340.380.34优先0.0050.0010.005现状
    B4160.260.400.26优先0.011<0.0010.011现状
    平均值0.300.300.270.0090.0060.009
    注:现状指维持现状区;一般指一般控制区;重点指重点控制区;优先指优先控制区。
    下载: 导出CSV

    表  4  国外典型海域综合治理水质改善效果

    Table  4.   Water quality improvement effect of typical foreign regions with comprehensive management

    典型海域综合治理年份海域水质改善程度
    日本东京湾[40] 1989—2015 无机氮浓度降低35%,活性磷酸盐浓度降低40%
    日本濑户内海[41] 1973—2007 无机氮浓度降低56%,活性磷酸盐浓度降低35%
    欧洲波罗的海[42-44] 1990—2015 无机氮浓度降低40%,活性磷酸盐浓度降低33%
    美国切萨皮克湾[9,31] 1985—2015 总氮浓度降低30%,总磷浓度降低40%
    下载: 导出CSV
  • [1] 韩文辉, 党晋华, 赵颖, 等.流域水质目标管理技术研究概述[J]. 环境与可持续发展,2020,45(5):133-137. doi: 10.19758/j.cnki.issn1673-288x.202005133

    HAN W H, DANG J H, ZHAO Y, et al. Research summary on the basin water quality target management technique[J]. Environment and Sustainable Development,2020,45(5):133-137. doi: 10.19758/j.cnki.issn1673-288x.202005133
    [2] 国家环境保护局. 海水水质标准: GB 3097—1997[S]. 北京: 环境科学出版社, 2004.
    [3] 夏桂敏, 张思瑶.基于季节性Kendall检验法的白石水库水质变化趋势[J]. 南水北调与水利科技,2015,13(6):1069-1074. doi: 10.13476/j.cnki.nsbdqk.2015.06.010

    XIA G M, ZHANG S Y. Water quality variation in the Baishi Reservoir based on seasonal Kendall test method[J]. South-to-North Water Transfers and Water Science & Technology,2015,13(6):1069-1074. doi: 10.13476/j.cnki.nsbdqk.2015.06.010
    [4] 林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261

    LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction of TN in wastewater treatment effluent using BP neural network and ARIMA model[J]. Journal of Environmental Engineering Technology,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261
    [5] 王英伟, 马树才.基于ARIMA和LSTM混合模型的时间序列预测[J]. 计算机应用与软件,2021,38(2):291-298. doi: 10.3969/j.issn.1000-386x.2021.02.047

    WANG Y W, MA S C. Time series forecasting based on ARIMA_DLSTM hybrid model[J]. Computer Applications and Software,2021,38(2):291-298. doi: 10.3969/j.issn.1000-386x.2021.02.047
    [6] 李文静, 王潇潇.基于简化型LSTM神经网络的时间序列预测方法[J]. 北京工业大学学报,2021,47(5):480-488.

    LI W J, WANG X X. Time series prediction method based on simplified LSTM neural network[J]. Journal of Beijing University of Technology,2021,47(5):480-488.
    [7] HIRSCH R M, SLACK J R, SMITH R A. Techniques of trend analysis for monthly water quality data[J]. Water Resources Research,1982,18(1):107-121. doi: 10.1029/WR018i001p00107
    [8] ZHANG Q, MURPHY R R, TIAN R, et al. Chesapeake Bay's water quality condition has been recovering: insights from a multimetric indicator assessment of thirty years of tidal monitoring data[J]. Science of the Total Environment,2018,637/638:1617-1625. doi: 10.1016/j.scitotenv.2018.05.025
    [9] HASTIE T, TIBSHIRANI R. Generalized additive models[J]. Statistical Science,1986,1(3):297-310.
    [10] HARDING L W, GALLEGOS C L, PERRY E S, et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay[J]. Estuaries and Coasts,2016,39(3):664-681. doi: 10.1007/s12237-015-0023-7
    [11] QIAO Y H, FENG J F, CUI S F, et al. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China[J]. Marine Pollution Bulletin,2017,117(1/2):222-228.
    [12] RICHARDS R, CHALOUPKA M, STRAUSS D, et al. Using generalized additive modelling to understand the drivers of long-term nutrient dynamics in the broadwater estuary (a subtropical estuary), Gold Coast, Australia[J]. Journal of Coastal Research,2014,298:1321-1329. doi: 10.2112/JCOASTRES-D-12-00190.1
    [13] VARANKA S, HJORT J. Spatio-temporal aspects of the environmental factors affecting water quality in boreal rivers[J]. Environmental Earth Sciences,2016,76(1):1-13.
    [14] ZHANG H X, HUO S L, YEAGER K M, et al. Phytoplankton response to climate changes and anthropogenic activities recorded by sedimentary pigments in a shallow eutrophied lake[J]. Science of the Total Environment,2019,647:1398-1409. doi: 10.1016/j.scitotenv.2018.08.081
    [15] ECCLES R, ZHANG H, HAMILTON D, et al. Trends in water quality in a subtropical Australian river-estuary system: responses to damming, climate variability and wastewater discharges[J]. Journal of Environmental Management,2020,269:110796. doi: 10.1016/j.jenvman.2020.110796
    [16] SONG W P, DAI Y Y, DONG Y B. Study of the water quality in Liaohe Park based on the model of GAM[J]. Marine Science Bulletin,2012,14(1):90-96.
    [17] ROBSON B J, DOURDET V. Prediction of sediment, particulate nutrient and dissolved nutrient concentrations in a dry tropical river to provide input to a mechanistic coastal water quality model[J]. Environmental Modelling & Software,2015,63:97-108.
    [18] 天津市规划和自然资源局. 2015年天津市生态环境状况公报[A/OL]. (2016-09-30)[2021-06-23]. http://ghhzrzy.tj.gov.cn/zwgk_143/tzgg/202012/t20201206_4496986.html.
    [19] PENG S T, DAI M X, HU Y D, et al. Long-term (1996-2006) variation of nitrogen and phosphorus and their spatial distributions in Tianjin coastal seawater[J]. Bulletin of Environmental Contamination and Toxicology,2009,83(3):416-421. doi: 10.1007/s00128-009-9680-1
    [20] PENG S T. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: temporal-spatial variations, sources, pollution statuses, and ecological risks[J]. Marine Pollution Bulletin,2015,95(1):445-451. doi: 10.1016/j.marpolbul.2015.03.032
    [21] LIU X H, LIU D Y, WANG Y J, et al. Temporal and spatial variations and impact factors of nutrients in Bohai Bay, China[J]. Marine Pollution Bulletin,2019,140:549-562. doi: 10.1016/j.marpolbul.2019.02.011
    [22] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范 第1部分: 总则: GB/T 12763.1—2007[S]. 北京: 中国标准出版社, 2008.
    [23] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋监测规范 第4部分: 海水分析: GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008.
    [24] 天津市统计局. 2014天津统计年鉴[M]. 北京: 中国统计出版社, 2014.
    [25] WOOD S N. Generalized Additive Models[M]. New York: Chapman and Hall/CRC, 2017.
    [26] WOOD S N. Mgcv: GAMs and generalized ridge regression for R[J]. R News,2001,1:20-25.
    [27] MARRA G, WOOD S N. Coverage properties of confidence intervals for generalized additive model components[J]. Scandinavian Journal of Statistics,2012,39(1):53-74. doi: 10.1111/j.1467-9469.2011.00760.x
    [28] WOOD S N. On p-values for smooth components of an extended generalized additive model[J]. Biometrika,2012,100(1):221-228.
    [29] CHU J T, XIA J, XU C Y, et al. Spatial and temporal variability of daily precipitation in Haihe River Basin, 1958-2007[J]. Journal of Geographical Sciences,2010,20(2):248-260. doi: 10.1007/s11442-010-0248-0
    [30] ZHANG J P, ZHI M M. Effects of basin nutrient discharge variations coupled with climate change on water quality in Lake Erhai, China[J]. Environmental Science and Pollution Research International,2020,27(35):43700-43710. doi: 10.1007/s11356-020-09179-0
    [31] MURPHY R R, PERRY E, HARCUM J, et al. A Generalized Additive Model approach to evaluating water quality: Chesapeake Bay case study[J]. Environmental Modelling & Software,2019,118:1-13.
    [32] RAO C R. Linear statistical inference and its applications[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 1973.
    [33] 宋兵魁, 齐树亭, 李斯, 等.渤海湾氮、磷营养盐在水体和沉积物中的分布特征及其相互关系[J]. 海洋学研究,2019,37(1):83-90. doi: 10.3969/j.issn.1001-909X.2019.01.011

    SONG B K, QI S T, LI S, et al. Spatial distribution of nitrogen and phosphorus in waters and sediments in Bohai Bay and their correlation[J]. Journal of Marine Sciences,2019,37(1):83-90. doi: 10.3969/j.issn.1001-909X.2019.01.011
    [34] 乔延龙, 殷小亚, 孙艺, 等.天津市海洋生态文明建设研究[J]. 海洋开发与管理,2018,35(6):71-75. doi: 10.3969/j.issn.1005-9857.2018.06.016

    QIAO Y L, YIN X Y, SUN Y, et al. The construction of marine ecological civilization in Tianjin[J]. Ocean Development and Management,2018,35(6):71-75. doi: 10.3969/j.issn.1005-9857.2018.06.016
    [35] 唐山统计年鉴委员会. 2019唐山市统计年鉴[J]. 北京: 中国统计出版社, 2019.
    [36] 李冕, 赵辉, 鲍晨光, 等.改进的IDW插值模型在海水水质评价中的应用[J]. 海洋环境科学,2014,33(2):258-261.

    LI M, ZHAO H, BAO C G, et al. Application of an improving IDW interpolation in seawater quality assessment[J]. Marine Environmental Science,2014,33(2):258-261.
    [37] 国务院关于印发《水污染防治行动计划》的通知[A/OL]. (2015-05-04)[2021-6-24]. http://www.hnsx.gov.cn/zwgk/40033/40043/40063/40068/content_2777912.html.
    [38] 生态环境部 发展改革委 自然资源部关于印发《渤海综合治理攻坚战行动计划》的通知[A/OL]. (2018-11-30)[2021-06-25]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201812/t20181211_684232.html.
    [39] 天津市生态环境局. 2020年天津市生态环境状况公报[A/OL]. (2021-06-22)[2021-06-23]. http://sthj.tj.gov.cn/YWGZ7406/HJGL7886/HJTJ7803/202106/t20210622_5483949.html.pdf.
    [40] KUBO A, HASHIHAMA F, KANDA J, et al. Long-term variability of nutrient and dissolved organic matter concentrations in Tokyo Bay between 1989 and 2015[J]. Limnology and Oceanography, 2019, 64(Suppl 1): 209-222.
    [41] NISHIKAWA T, HORI Y, NAGAI S, et al. Nutrient and phytoplankton dynamics in Harima-nada, Eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007[J]. Estuaries and Coasts,2010,33(2):417-427. doi: 10.1007/s12237-009-9198-0
    [42] BERGSTRÖM L, AHTIAINEN H, AVELLAN L, et al. HELCOM state of the Baltic Sea: second HELCOM holistic assessment 2011-2016[R/OL]//Baltic Sea Environment Proceedings 155, 2018[2021-06-26].https://helcom.fi/media/publications/BSEP155.pdf.
    [43] HELCOM. Dissolved inorganic nitrogen (DIN) [R/OL]. HELCOM core indicator report. [2021-06-26].https://helcom.fi/media/core%20indicators/Dissolved-inorganic-nitrogen-DIN-HELCOM-core-indicator-2018.pdf.
    [44] HELCOM. Dissolved inorganic phosphorus (DIP) [R/OL]//HELCOM core indicator report. 2018[2021-06-26].https://helcom.fi/media/core%20indicators/Dissolved-inorganic-phosphorus-DIP-HELCOM-core-indicator-2018.pdf.
    [45] XU Z Z, JI Z X, LIANG B, et al. Estimate of nutrient sources and transport into Bohai Bay in China from a lower plain urban watershed using a SPARROW model[J]. Environmental Science and Pollution Research International,2021,28(20):25733-25747. ◇ doi: 10.1007/s11356-020-11932-4
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  191
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05

目录

    /

    返回文章
    返回