Water quality distribution characteristics and water resources allocation measures of river-reservoir connected drinking water sources in Zhuhai City
-
摘要:
珠海市河流型和水库型饮用水源的补给来源均主要来自西江,其中水库型水源主要通过西江泵站调水的方式进行蓄水。利用聚类分析和判别分析对水源水质时空分布特征进行了分析,讨论水期变化和水源位置等因素对水源水质的影响,并通过水力停留时间计算和相关性分析,初步探讨了水资源调度及水力停留时间对水源水质的影响。结果表明:珠海市水源水质可分为西江上游河流型水源、西江下游河流型水源和水库型水源3类;水库型水源中的总磷、粪大肠菌群、硫化物、硝酸盐浓度低于河流型水源,其中,水库型水源、河流型水源中的总磷浓度分别为0.01~0.04、0.04~0.12 mg/L,硝酸盐浓度分别为0.006~1、0.100~2 mg/L;上游河流型水源受咸潮上溯影响较小,下游河流型水源枯水期硫酸盐及氯化物浓度显著上升,但丰水期水质与上游河流型水源差异较小。基于上述分析结果,提出水资源调配措施:1)通过延长水库水力停留时间,包括提高库容量较大水库利用率,调整水库与泵站的连通方式等,以发挥水库型水源营养盐自净功能。2)枯水期可发挥上游河流型水源咸潮抵御的功能优势,保障水源盐度达标,丰水期可发挥下游河流型水源供水成本较低的优势,加大其水源取水比例。3)优先选取总磷、硝酸盐浓度较低(如总磷浓度达到湖库型水源Ⅲ类标准限值),且距离城区较近的泵站进行供水。通过上述措施的实施,提高水质因素在水资源调配中的作用,降低水资源调度对水源水质的冲击和水源水质超标风险。
Abstract:The recharging sources of river and reservoir type of drinking water sources in Zhuhai City are mainly from Xijiang River, among which the water storage of reservoir type of water sources is mainly supplied by pumping stations from Xijiang River. Cluster analysis and discriminant analysis were used to analyze the characteristics of spatial and temporal distribution of water quality in drinking water sources, so as to discuss the influence of water season change and water sources location on water quality. Water retention time calculation and correlation analysis were used to preliminarily study the influence of water resources allocation and hydraulic retention time on water quality. The result shows that the source water quality in Zhuhai City could be divided into three categories: upstream river type, downstream river type and reservoir type. The concentrations of total phosphorus, fecal coliform, sulfide and nitrate in reservoir type of water sources were lower than those in river type of water sources. The total phosphorus concentrations in the reservoir and river types of water sources were 0.01-0.04 and 0.04-0.12 mg/L, respectively; and the nitrate concentrations were 0.006-1 and 0.100-2 mg/L, respectively. The river type of water sources in the upstream were less affected by the salt tide. The concentrations of sulfate and chloride of river type of water sources in the downstream increased significantly in the dry season, and the water quality of the water source of the downstream in the wet season was similar to that of the upstream. Based on the above analysis result, water resources allocation measures are proposed: Firstly, the self-purification function of reservoir type of drinking water sources could be utilized by extending the hydraulic retention time, including increasing the utilization rate of the reservoir with large capacity and adjusting the connection mode between reservoirs and pumping stations. Secondly, the salt tide resistance function of upstream river type of drinking water sources could be utilized to ensure water salinity meeting the standard in the dry season. Lower cost advantage of downstream river type of drinking water source could be utilized and the water utilization proportion could be increased in the wet season. Furthermore, the pumping stations with lower total phosphorus and nitrate concentrations (such as total phosphorus concentration reaching the standard limit value of type Ⅲ of lake-reservoir type water sources) and closer to the urban area were preferentially selected for water supply. Through the implementation of the above measures, the consideration of water quality factors in water resource allocation is improved, and the impact of water resource scheduling on water quality and the risk of water quality exceeding standard are reduced.
-
表 1 2014—2018年珠海市水源水质监测结果统计
Table 1. Statistical description of monitoring results of source water quality in Zhuhai City from 2014 to 2018
mg/L 水源名称 统计
特征水温1) pH2) 溶解
氧CODMn BOD5 氨氮 总磷 总氮 氟化
物砷 石油
类硫化
物粪大肠
菌群3)硫酸
盐氯化
物硝酸
盐铁 水库型 大镜山水库 最小值 11.0 7.2 6.15 1.00 0.50 0.020 0.01 0.21 0.070 0.000 2 0.01 0.004 5 20 2.81 4.87 0.007 0.006 最大值 34.0 8.9 8.56 4.30 3.20 0.401 0.05 1.79 0.650 0.002 1 0.04 0.021 0 2 650 88.25 36.2 2.080 0.275 均值 24.6 8.1 6.90 2.20 1.94 0.171 0.02 0.60 0.174 0.000 8 0.02 0.008 6 288 20.79 13.3 0.252 0.079 变异系数 0.20 0.03 0.08 0.37 0.29 0.60 0.61 0.66 0.51 0.59 0.38 0.42 1.76 0.68 0.47 1.19 0.89 杨寮水库 最小值 11.0 7.1 5.95 1.05 0.50 0.036 0.01 0.21 0.085 0.000 1 0.01 0.005 0 15 4.56 4.46 0.006 0.005 最大值 34.0 8.9 8.41 3.80 2.80 0.312 0.05 2.31 0.475 0.002 1 0.04 0.016 5 1800 67.45 22.75 2.055 0.249 均值 24.5 8.1 6.85 2.06 1.82 0.143 0.02 0.57 0.181 0.000 6 0.02 0.008 6 267 18.35 11.08 0.267 0.070 变异系数 0.20 0.03 0.08 0.34 0.31 0.47 0.59 0.73 0.42 0.75 0.41 0.42 1.53 0.65 0.40 1.26 0.92 竹仙洞水库 最小值 11.5 7.2 6.10 1.00 0.50 0.022 0.01 0.12 0.105 0.000 2 0.01 0.004 5 20 6.70 5.33 0.080 0.010 最大值 34.0 8.5 8.34 2.75 2.90 0.242 0.05 2.35 0.690 0.002 2 0.04 0.017 0 2300 58.05 29.0 2.085 0.220 均值 24.5 8.0 6.92 1.93 1.80 0.121 0.02 0.74 0.194 0.001 0 0.02 0.009 0 365 22.66 12.44 0.470 0.101 变异系数 0.20 0.03 0.07 0.24 0.32 0.45 0.66 0.88 0.49 0.51 0.36 0.41 1.32 0.47 0.41 1.19 0.65 竹银水库 最小值 13.6 7.6 6.25 1.10 0.50 0.020 0.01 0.33 0.090 0.000 2 0.01 0.003 5 20 5.60 2.76 0.095 0.008 最大值 30.5 8.7 8.45 3.00 3.40 0.234 0.05 2.09 0.545 0.002 6 0.04 0.021 5 3 350 66.45 28.7 1.515 0.275 均值 24.4 8.1 6.90 1.98 1.92 0.133 0.02 0.65 0.171 0.000 9 0.02 0.008 8 660 22.77 8.67 0.390 0.109 变异系数 0.19 0.03 0.07 0.30 0.34 0.46 0.56 0.75 0.51 0.47 0.38 0.48 1.05 0.53 0.58 1.05 0.79 乾务水库 最小值 12.9 7.5 6.14 1.05 0.50 0.032 0.01 0.32 0.085 0.000 2 0.01 0.005 0 20 7.30 4.18 0.006 0.006 最大值 30.5 8.7 8.88 3.10 3.00 0.364 0.04 2.39 0.605 0.001 4 0.04 0.023 0 1 800 65.80 90.4 1.480 0.200 均值 23.9 8.1 7.06 2.00 1.88 0.142 0.02 0.69 0.172 0.000 6 0.02 0.009 6 280 22.39 13.24 0.368 0.056 变异系数 0.20 0.03 0.08 0.28 0.29 0.54 0.50 0.75 0.56 0.49 0.40 0.48 1.61 0.60 0.98 1.06 0.87 河流型 竹洲头泵站 最小值 13.0 7.3 6.18 1.12 0.60 0.031 0.05 0.39 0.092 0.000 3 0.01 0.005 0 190 5.88 2.72 0.105 0.010 最大值 31.7 8.6 9.11 3.65 2.80 0.318 0.09 2.73 0.652 0.003 1 0.04 0.022 3 1 767 60.17 40.10 2.068 0.271 均值 24.4 8.0 6.91 2.25 2.01 0.170 0.06 1.13 0.175 0.001 1 0.03 0.012 8 1 410 24.14 9.65 0.843 0.128 变异系数 0.20 0.03 0.08 0.34 0.32 0.49 0.18 0.71 0.54 0.52 0.35 0.26 0.25 0.51 0.78 0.93 0.66 平岗泵站 最小值 13.3 7.4 6.13 1.12 0.65 0.039 0.05 0.35 0.092 0.000 2 0.01 0.005 0 375 5.17 2.68 0.112 0.010 最大值 31.8 8.6 9.09 3.67 2.75 0.343 0.11 2.61 0.420 0.003 2 0.04 0.022 0 1 783 59.33 31.80 2.060 0.270 均值 24.5 8.0 6.80 2.28 2.06 0.187 0.06 1.13 0.177 0.001 1 0.03 0.012 1 1371 24.75 8.62 0.842 0.135 变异系数 0.20 0.02 0.08 0.39 0.32 0.55 0.18 0.69 0.42 0.58 0.34 0.30 0.27 0.50 0.58 0.93 0.60 广昌泵站 最小值 12.0 7.5 5.85 1.15 0.50 0.020 0.05 0.37 0.037 0.000 3 0.01 0.005 5 69 7.33 3.96 0.108 0.010 最大值 31.1 8.6 7.90 3.53 2.80 0.775 0.15 3.70 0.415 0.003 5 0.04 0.027 7 3867 238.7 248.3 2.090 0.270 均值 24.5 7.9 6.65 2.31 2.09 0.210 0.08 1.20 0.193 0.001 3 0.03 0.014 6 1296 53.22 77.78 0.821 0.116 变异系数 0.20 0.02 0.07 0.34 0.31 0.54 0.29 0.76 0.37 0.54 0.35 0.32 0.42 1.04 1.19 0.93 0.72 黄杨河泵站 最小值 13.6 7.4 6.20 1.25 0.70 0.035 0.04 0.35 0.086 0.000 2 0.01 0.005 0 425 7.14 4.41 0.094 0.010 最大值 32.5 8.4 9.11 3.60 2.78 0.362 0.14 2.55 0.465 0.002 6 0.04 0.042 0 1767 62.67 34.20 2.028 0.290 均值 24.4 7.9 6.68 2.38 2.15 0.177 0.07 1.15 0.168 0.001 1 0.02 0.014 8 1360 25.84 11.47 0.835 0.151 变异系数 0.20 0.03 0.07 0.34 0.27 0.50 0.20 0.71 0.44 0.51 0.37 0.33 0.24 0.52 0.54 0.93 0.61 1) 单位为℃;2)pH无量纲;3) 单位为个/L。 表 2 水源水质分类判别回代验证结果
Table 2. Verification results of source water quality classification and discrimination
项目 组别 水质分组预测结果 合计 1 2 3 水质组数/个 1 291 4 0 295 2 0 179 1 180 3 1 27 32 60 水质组数占比/% 1 98.6 1.4 0 100 2 0 99.4 0.6 100 3 1.7 45.0 53.3 100 表 3 标准化判别函数载荷
Table 3. Standardized discriminant function load
指标 函数1 函数2 总磷 0.745* −0.110 粪大肠菌群 0.401* −0.277 硫化物 0.234* 0.015 硝酸盐 0.159* −0.093 总氮 0.151* −0.040 砷 0.142* 0.040 pH −0.127* −0.013 氨氮 0.108* 0.092 CODMn 0.077* −0.034 BOD5 0.065* −0.020 氯化物 0.137 0.840* 硫酸盐 0.121 0.487* 铁 0.125 −0.189* 溶解氧 −0.067 −0.088* 氟化物 0.002 0.080* 石油类 0.007 0.043* 水温 0.003 0.005* 注:载荷为每个变量与判别函数之间最大的绝对相关性计算值;指标依据函数内相关性绝对大小进行排序。*表示与函数相关性较大指标。 -
[1] 夏军, 高扬, 左其亭, 等.河湖水系连通特征及其利弊[J]. 地理科学进展,2012,31(1):26-31. doi: 10.11820/dlkxjz.2012.01.004XIA J, GAO Y, ZUO Q T, et al. Characteristics of interconnected rivers system and its ecological effects on water environment[J]. Progress in Geography,2012,31(1):26-31. doi: 10.11820/dlkxjz.2012.01.004 [2] CASANOVA S M C, PANARELLI E A, HENRY R. Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil)[J]. Limnologica,2009,39(4):292-301. doi: 10.1016/j.limno.2009.06.008 [3] KUFEL L, LEŚNICZUK S. Hydrological connectivity as most probable key driver of chlorophyll and nutrients in oxbow lakes of the Bug River (Poland)[J]. Limnologica,2014,46:94-98. doi: 10.1016/j.limno.2013.10.008 [4] 向莹, 韦安磊, 茹彤, 等. 中国河湖水系连通与区域生态环境影响[J]. 中国人口·资源与环境, 2015, 25(增刊1): 139-142.XIANG Y, WEI A L, RU T, et al. Rivers system connection and regional ecological and environmental impacts in China[J]. China Population, Resources and Environment, 2015, 25(Suppl 1): 139-142. [5] 胡溪, 毛献忠.珠江口磨刀门水道咸潮入侵规律研究[J]. 水利学报,2012,43(5):529-536.HU X, MAO X Z. Study on saltwater intrusion in modaomen of the pearl estuary[J]. Journal of Hydraulic Engineering,2012,43(5):529-536. [6] 高时友, 陈子燊.珠江口磨刀门水道枯季咸潮上溯与盐度输运机理分析[J]. 海洋通报,2016,35(6):625-631.GAO S Y, CHEN Z S. Analysis on salinity transport mechanism for the Modaomen waterway of Pearl River in the dry season[J]. Marine Science Bulletin,2016,35(6):625-631. [7] 刘斌, 黄宇铭, 刘丽诗, 等.2005年以来珠江磨刀门水道咸界变化特点分析[J]. 人民珠江,2016,37(5):30-33. doi: 10.3969/j.issn.1001-9235.2016.05.007LIU B, HUANG Y M, LIU L S, et al. Analysis of change characteristics of gate waterway in Pearl River since 2005 a salty field[J]. Pearl River,2016,37(5):30-33. doi: 10.3969/j.issn.1001-9235.2016.05.007 [8] 韩志远, 田向平, 刘峰.珠江磨刀门水道咸潮上溯加剧的原因[J]. 海洋学研究,2010,28(2):52-59. doi: 10.3969/j.issn.1001-909X.2010.02.007HAN Z Y, TIAN X P, LIU F. Study on the causes of intensified saline water intrusion into Modaomen Estuary of the Zhujiang River in recent years[J]. Journal of Marine Sciences,2010,28(2):52-59. doi: 10.3969/j.issn.1001-909X.2010.02.007 [9] 刘擎, 杨宇峰. 珠海磨刀门浮游植物群落结构和水质特征[C]//中国藻类学会第八次会员大会暨第十六次学术讨论会论文集. 武汉: 中国藻类学会, 2011: 247. [10] 邹红菊. 珠海市三座调水水库浮游植物群落动态与藻类水华预警研究[D]. 广州: 暨南大学, 2010. [11] 胡培, 邱静.水动力影响下的调水水库营养物质变化规律研究: 以珠海市大镜山水库为例[J]. 中国农村水利水电,2015(9):58-61. doi: 10.3969/j.issn.1007-2284.2015.09.014HU P, QIU J. Research on the nutrients change of pumped storage reservoir under hydrodynamics: a case study of Dajingshan Reservoir in Zhuhai City[J]. China Rural Water and Hydropower,2015(9):58-61. doi: 10.3969/j.issn.1007-2284.2015.09.014 [12] 谢飞. 珠海供水水库富营养化现状与浮游植物群落特征[D]. 广州: 暨南大学, 2014. [13] 高坤乾. 珠海市大镜山水库细菌生理群生态学的初步研究[D]. 广州: 暨南大学, 2006. [14] 胡韧. 珠海水库富营养化现状、浮游植物群落特征与蓝藻水华风险分析[D]. 广州: 暨南大学, 2009. [15] 朱毅, 关小桃, 王晓彬, 等.珠海竹银水库入库污染现状评估及水环境容量分析[J]. 生态科学,2012,31(2):97-103. doi: 10.3969/j.issn.1008-8873.2012.02.001ZHU Y, GUAN X T, WANG X B, et al. Evaluation of pollution status and analysis of water environmental capacity for Zhuyin Reservoir flowing in Zhuhai[J]. Ecological Science,2012,31(2):97-103. doi: 10.3969/j.issn.1008-8873.2012.02.001 [16] 刘格辛, 吴孟李, 尹娟, 等.西江调水对珠海市供水水库富营养化的影响及其管理对策[J]. 生态科学,2013,32(4):494-499.LIU G X, WU M L, YIN J, et al. Influence of pumping water from Xijiang River on eutrophication of water supply reservoirs and its management strategy in Zhuhai City[J]. Ecological Science,2013,32(4):494-499. [17] 夏晓萍.珠海市中小型水库水质综合评价[J]. 生态科学,2008,27(3):159-163. doi: 10.3969/j.issn.1008-8873.2008.03.007XIA X P. A comprehensive appraisement of water quality of medium or small reservoirs in Zhuhai[J]. Ecological Science,2008,27(3):159-163. doi: 10.3969/j.issn.1008-8873.2008.03.007 [18] 李东青, 梁籍, 张立燕, 等.密云库区1991—2011年水质变化趋势研究[J]. 中国环境科学,2015,35(6):1675-1685. doi: 10.3969/j.issn.1000-6923.2015.06.009LI D Q, LIANG J, ZHANG L Y, et al. The research of water quality trend in the Miyun Reservoir from 1991 to 2011[J]. China Environmental Science,2015,35(6):1675-1685. doi: 10.3969/j.issn.1000-6923.2015.06.009 [19] 李虹, 王丽婧, 刘永.水库型流域水质安全评估与预警技术框架[J]. 水生态学杂志,2018,39(6):1-7.LI H, WANG L J, LIU Y. Technical framework for water quality safety assessment and early-warning in reservoir basin[J]. Journal of Hydroecology,2018,39(6):1-7. [20] 郑丙辉, 王丽婧, 龚斌.三峡水库上游河流入库面源污染负荷研究[J]. 环境科学研究,2009,22(2):125-131.ZHENG B H, WANG L J, GONG B. Load of non-point source pollutants from upstream rivers into Three Gorges Reservoir[J]. Research of Environmental Sciences,2009,22(2):125-131. [21] 王丽婧, 李虹, 杨正健, 等.三峡水库蓄水运行初期(2003—2012年)水环境演变特征的“四大效应”[J]. 环境科学研究,2020,33(5):1109-1118.WANG L J, LI H, YANG Z J, et al. Four effects of water environment evolution in early period (2003-2012) after impoundment of the Three Gorges Reservoir[J]. Research of Environmental Sciences,2020,33(5):1109-1118. [22] 陈善荣, 何立环, 林兰钰, 等.近40年来长江干流水质变化研究[J]. 环境科学研究,2020,33(5):1119-1128.CHEN S R, HE L H, LIN L Y, et al. Change trends of surface water quality in the mainstream of the Yangtze River during the past four decades[J]. Research of Environmental Sciences,2020,33(5):1119-1128. [23] 李明月, 钱锋, 李丹, 等.辽河保护区水质时空分布特征及其影响因素[J]. 环境工程技术学报,2020,10(6):1043-1049. doi: 10.12153/j.issn.1674-991X.20200104LI M Y, QIAN F, LI D, et al. Spatial and temporal distribution characteristics and influencing factors of water quality in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(6):1043-1049. doi: 10.12153/j.issn.1674-991X.20200104 [24] 吴天浩, 刘劲松, 邓建明, 等.大型过水性湖泊: 洪泽湖浮游植物群落结构及其水质生物评价[J]. 湖泊科学,2019,31(2):440-448. doi: 10.18307/2019.0213WU T H, LIU J S, DENG J M, et al. Community structure of phytoplankton and bioassessment of water quality in a large water-carrying lake, Lake Hongze[J]. Journal of Lake Sciences,2019,31(2):440-448. doi: 10.18307/2019.0213 [25] 谷孝鸿, 曾庆飞, 毛志刚, 等.太湖2007—2016十年水环境演变及“以渔改水”策略探讨[J]. 湖泊科学,2019,31(2):305-318. doi: 10.18307/2019.0201GU X H, ZENG Q F, MAO Z G, et al. Water environment change over the period 2007-2016 and the strategy of fishery improve the water quality of Lake Taihu[J]. Journal of Lake Sciences,2019,31(2):305-318. ◇ doi: 10.18307/2019.0201