Research progress of emission characteristics of microbial aerosols in municipal wastewater treatment plants
-
摘要:
为全面理解城市污水处理厂微生物气溶胶的逸散特性,系统阐述了国内外城市污水处理厂微生物气溶胶的研究进展。城市污水处理厂中涉及机械推流和曝气搅拌的处理设施包括格栅间、沉砂池、曝气池和污泥脱水车间等是微生物气溶胶的主要来源,微生物气溶胶的粒径主要分布在小于4.7 µm的可吸入范围内。不同污水处理设施处微生物气溶胶的种群结构存在差异,Acinetobacter、Enterobacter、Arcobacter、Pseudomonas和Escherichia coli是污水处理设施微生物气溶胶中常见的潜在致病菌菌属,能够通过黏膜、损伤的皮肤、消化道和呼吸道侵入机体,威胁人体健康。城市污水处理厂微生物气溶胶的逸散特性受污水处理工艺类型、曝气类型和速率、进水水质、温度和相对湿度、风速和风向、太阳辐射以及季节等多种因素的影响。
Abstract:In order to fully understand the emission characteristics of microbial aerosols in municipal wastewater treatment plants (MWWTPs), the research progress of microbial aerosols in MWWTPs at home and abroad was systematically expounded. The treatment facilities involving mechanical push flow and aeration mixing in MWWTPs, which included grid room, grit tank, aeration tank, and sludge dewatering room, were the main sources of microbial aerosols. Microbial aerosols were mainly distributed in the inhalable particle size range of less than 4.7 µm. There were differences in the population community of microbial aerosols at various wastewater treatment facilities. Acinetobacter, Enterobacter, Arcobacter, Pseudomonas, and Escherichia coli were common potential pathogenic bacteria in microbial aerosols in the wastewater treatment facilities, which could pose a direct threat to human health through the mucous membrane, damaged skin, and digestive and respiratory tract. The emission characteristics of microbial aerosols in MWWTPs were affected by many factors such as type of sewage treatment process, type and rate of aeration, quality of influent water, temperature and relative humidity, wind speed and direction, solar radiation, and season.
-
Key words:
- microbial aerosol /
- sources /
- emission characteristics /
- influencing factors
-
表 1 不同处理设施微生物气溶胶的逸散浓度
Table 1. Emission concentrations of microbial aerosols in different treatment facilities
CFU/m3 种类 格栅/沉砂池 曝气池 二沉池 污泥脱水车间 全流程 数据来源 细菌 1 988±128 4 726±915 1 625±303 5 565±571 459±88~5 565±571 文献[28] 细菌 228 846 110 141 110~846 文献[32] 细菌 404 579 27 51 27~579 细菌 9 670~46 678 459~4 364 1 661~5 701 459~46 678 文献[15] 细菌 3 117±233 4 328±347 2755±212 7 866±969 1 120~8 942 文献[33] 细菌 1 177 270 1 697 233~1 697 文献[8] 细菌 2 144±302 1 109±137 60±10 74±10 48±17~4 878±272 文献[14] 细菌 1 882 1 973 1 301 1 301~1 973 文献[29] 细菌 1 031 1 857 443 1 441 443~1 857 文献[34] 真菌 212±35 583±37 141±41 830±104 141±41~1 590±152 文献[28] 真菌 487 80 930 80~930 文献[8] 真菌 1 063 944 781 781~1 063 文献[29] 真菌 720 1 384 388 497 67~1 384 文献[34] 霉菌、
酵母菌750 535 335 335~750 文献[35] 表 2 各采样点微生物气溶胶中的常见菌属[7,14,15,16,23,25,32,45-47]
Table 2. Common genera of microbial aerosols in various sampling points
微生物 一级处理设施 生化设施 污泥处理设施 下风向 细菌 革兰氏阴性菌 Alcaligences、Aeromonas、Arcobacter、Acinetobacter、Brevundimonas、Cyanobacteria、Chroococcidiopsis、Chryseobacterium、Enterobacter、Pseudomonas Bacteroides、Brevumdimonas、Cyanobacteria、Dechloromonas、Shigella、Enterocolitica、Escherichia coli.、Serratia、Klebsiella、 Thauera、Zoogloea Acinetobacter、Arcobacter、Bacteroides、Chryseobacterium、Enterbacter、Klebsiella、Sphingomonas、Thauera、Zoogloea Chroococcidiopsis、Cyanobacteria、Serratia、Pseudomonas 革兰氏阳性菌 Bacillus、 Microthrix、Mycobacterium、Lysinibacillus Bacillus、Pantoea、Microthrix、Mycobacterium Bacillus、Pantoea、Micrococcus、Nocardiodies Bacillus、Microthrix、Pantoea、Planococcus 真菌 霉菌 Absidia、Actinomucor、Alternaria、Aspergillus、Botrytis、Boeremia、Cladosporium、Cochliobolus、Chaetomium、Davidiella、Mucor、Oidium、Penicillium、Verticillium Absidia、Actinomucor、Alternaria、Aspergillus、Boeremia、Chaetomium、Chrysosporium、Cladosporium、Cochliobolus、Davidiella、Mucor、Oidium、Penicillium Absidia、Actinomucor、Alternaria、Aspergillus、Boeremia、
Botrytis、 Boeremia、Cladosporium、Cochliobolus
Mucor、Oidium、
PenicilliumAbsidia、Actinomucor、Alternaria、Botrytis、 Boeremia、Cladosporium、Cochliobolus、Davidiella、Fusarium、Mucor、Oidium、Scopulariopsis、Talaromyces、Trichothecium 酵母菌 Candida、Cryptococcus、Rhodotorula Rhodotorula 表 3 常见病原微生物的危害
Table 3. Hazards of common pathogenic microorganisms
病原体 健康危害 细菌 志贺菌属(Escherichia Shigella) 可导致痢疾、腹泻、呕吐、发热、关节炎 埃希氏菌属(Escherichia coli) 可导致胃肠功能紊乱、腹泻、呕吐 沙门氏菌(Salmonella) 可导致结肠炎、痢疾、心内膜炎、心包炎、脑膜炎 霍乱弧菌(Vibrio cholera) 可导致腹泻、呕吐,甚至死亡 军团菌(Legionella) 可导致军团病、肺炎、发烧,甚至死亡 真菌 曲霉菌属(Aspergillus) 可导致直接感染、变态反应及曲霉菌毒素中毒或致癌 念珠菌属(Candidiasis) 可导致皮肤、黏膜感染,内脏感染和中枢神经系统感染 白假丝酵母菌(Candida albicans) 可导致机体抵抗力下降或菌群失调 病毒 肠道病毒(Enteroviruses) 可导致胃肠功能紊乱、心肌炎、脑膜炎、脑炎及瘫痪性疾病、流行性皮疹病、呼吸道感染、气管炎和肺炎、流行性眼结膜炎 甲肝病毒(Hepatitis A virus) 可导致肝脏功能障碍、肝炎 腺病毒(Adenovirus) 可导致呼吸道疾病、眼部感染 冠状病毒(Cronavirus) 可导致痢疾、腹泻、吸道感染、气管炎和肺炎 表 4 不同处理工艺微生物气溶胶的逸散水平
Table 4. Emission concentrations of microbial aerosols in different processes
CFU/m3 工艺 采样仪器 种类 进水 沉淀池/
沉砂池滴滤塔/
曝气池数据来源 滴滤塔 撞击式采样器 细菌(22 ℃) 2 790±380 1 120±688 322±79 文献[33] 嗜中温链霉菌 17±17 6±10 <6 嗜中温放线菌 2 690±472 8 840±702 2 000±1 610 活性污泥工艺 撞击式采样器 细菌(22 ℃) 2 230±519 2 010±484 1 930±247 文献[33] 嗜中温链霉菌 239±35 292±108 39±54 嗜中温放线菌 2 060±495 5 320±383 4 730±5 500 固定膜反应器 过滤式采样器 细菌(37 ℃) — — 300~11 000 文献[48] 真菌(25 ℃) <50~400 活性污泥工艺 过滤式采样器 细菌(37 ℃) — — 13 000~24 000 文献[48] 真菌(25 ℃) 1 400~2 400 表 5 不同活性污泥工艺微生物气溶胶的逸散水平
Table 5. Emission levels of microbial aerosols in different activated sludge processes
CFU/m3 工艺 种类 格栅间 曝气池 污泥脱水车间 全流程 数据来源 氧化沟 细菌 1 988±128 4 726±915 5 565±571 459±88~5 565±571 文献[28] 真菌 212±35 583±37 830±104 141±41~1 590±152 氧化沟 细菌 3 117±233 4 328±347 7 866±969 1 120~8 942 文献[33] A/A/O 细菌 1 177 270 1 697 270~1 697 文献[8] 真菌 487 80 930 80~930 A/A/O 细菌 510±198 92±55 58±26 23±10~1 869±271 文献[14] 细菌 951±138 989±83 152±26 66±23~2 333±219 细菌 2 144±302 1 109±137 74±10 48±17~4 878±272 A/A/O 细菌 10 000 2 340 536~10 000 文献[34] 真菌 14 400 208 0~14 400 -
[1] FRÖHLICH-NOWOISKY J, KAMPF C J, WEBER B, et al. Bioaerosols in the earth system: climate, health, and ecosystem interactions[J]. Atmospheric Research,2016,182:346-376. doi: 10.1016/j.atmosres.2016.07.018 [2] COX C S, WATHES C M. Bioaerosols handbook[M]. Boca: CRC Press, 1995. [3] 祁建华, 高会旺.生物气溶胶研究进展: 环境与气候效应[J]. 生态环境,2006,15(4):854-861.QI J H, GAO H W. Environment and climate effect of bioaerosol: a review[J]. Ecology and Environment,2006,15(4):854-861. [4] 郑龙飞, 聂玮, 沈毅成, 等.香港地区大气气溶胶化学特征及其传输研究[J]. 环境工程技术学报,2016,6(3):203-209. doi: 10.3969/j.issn.1674-991X.2016.03.001ZHENG L F, NIE W, SHEN Y C, et al. Characteristics of aerosol chemical composition in Hong Kong and its relationship with long-range transport[J]. Journal of Environmental Engineering Technology,2016,6(3):203-209. doi: 10.3969/j.issn.1674-991X.2016.03.001 [5] 郑云昊, 李菁, 陈灏轩, 等.生物气溶胶的昨天、今天和明天[J]. 科学通报,2018,63(10):878-894. doi: 10.1360/N972018-00121ZHENG Y H, LI J, CHEN H X, et al. Bioaerosol research: yesterday, today and tomorrow[J]. Chinese Science Bulletin,2018,63(10):878-894. doi: 10.1360/N972018-00121 [6] RECER G M, BROWNE M L, HORN E G, et al. Ambient air levels of Aspergillus fumigatus and thermophilic actinomycetes in a residential neighborhood near a yard-waste composting facility[J]. Aerobiologia,2001,17(2):99-108. doi: 10.1023/A:1010816114787 [7] KORZENIEWSKA E, FILIPKOWSKA Z, GOTKOWSKA-PŁACHTA A, et al. Determination of emitted airborne microorganisms from a BIO-PAK wastewater treatment plant[J]. Water Research,2009,43(11):2841-2851. doi: 10.1016/j.watres.2009.03.050 [8] LI J, ZHOU L T, ZHANG X Y, et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant[J]. Atmospheric Environment,2016,124:404-412. doi: 10.1016/j.atmosenv.2015.06.030 [9] HUMBAL C, GAUTAM S, TRIVEDI U. A review on recent progress in observations, and health effects of bioaerosols[J]. Environment International,2018,118:189-193. doi: 10.1016/j.envint.2018.05.053 [10] SMETS W, MORETTI S, DENYS S, et al. Airborne bacteria in the atmosphere: presence, purpose, and potential[J]. Atmospheric Environment,2016,139:214-221. doi: 10.1016/j.atmosenv.2016.05.038 [11] HENDERSON G, COX F, GANESH S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports,2015,5:14567. doi: 10.1038/srep14567 [12] 高敏, 李琳, 刘俊新.典型城市污水处理工艺微生物气溶胶逸散研究[J]. 给水排水,2010,46(9):146-150. doi: 10.3969/j.issn.1002-8471.2010.09.039GAO M, LI L, LIU J X. Dissipation of microbial aerosols from typical municipal wastewater processes[J]. Water & Wastewater Engineering,2010,46(9):146-150. doi: 10.3969/j.issn.1002-8471.2010.09.039 [13] 中华人民共和国国民经济和社会发展第十三个五年规划纲要(节选)[J]. 交通财会, 2016(4): 67-78. [14] YANG K X, LI L, WANG Y J, et al. Airborne bacteria in a wastewater treatment plant: emission characterization, source analysis and health risk assessment[J]. Water Research,2019,149:596-606. doi: 10.1016/j.watres.2018.11.027 [15] XU G S, HAN Y P, LI L, et al. Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant[J]. Journal of Environmental Sciences,2018,74:71-78. doi: 10.1016/j.jes.2018.02.007 [16] HAN Y P, YANG K X, YANG T, et al. Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process[J]. Ecotoxicology and Environmental Safety,2019,169:161-168. doi: 10.1016/j.ecoenv.2018.11.018 [17] RYLANDER R, ANDERSSON K, BELIN L, et al. Sewage worker's syndrome[J]. Lancet,1976,308:478-479. [18] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter[J]. Environment International,2015,74:136-143. doi: 10.1016/j.envint.2014.10.005 [19] SUN S C, LIN H H, LIN J H, et al. Underground sewage treatment plant: a summary and discussion on the current status and development prospects[J]. Water Science and Technology,2019,80(9):1601-1611. doi: 10.2166/wst.2019.429 [20] FILIPKOWSKA Z. Sanitary and bacteriological aspects of sewage treatment[J]. Acta Microbiologica Polonica,2003,52(Suppl):57-66. [21] FILIPKOWSKA Z, JANKOWSKA B, MICHALAK A. Reduction of indicator microorganisms in agricultural and domestic sewage in perspective stages of three stage waste water treatment Lezany plant[J]. Polish Journal of Environmental Studies,1993,36(4):127-131. [22] FARLING S, ROGERS T, KNEE J S, et al. Bioaerosol emissions associated with pit latrine emptying operations[J]. Science of the Total Environment,2019,648:1082-1086. doi: 10.1016/j.scitotenv.2018.08.147 [23] YANG T, HAN Y P, LIU J X, et al. Aerosols from a wastewater treatment plant using oxidation ditch process: characteristics, source apportionment, and exposure risks[J]. Environmental Pollution,2019,250:627-638. doi: 10.1016/j.envpol.2019.04.071 [24] 李彦鹏, 马天峰, 杜胜利, 等.大气生物气溶胶的源排放与源解析研究进展[J]. 地球科学与环境学报,2021,43(2):315-331.LI Y P, MA T F, DU S L, et al. Review on source emission and source identification of bioaerosols in the atmosphere[J]. Journal of Earth Sciences and Environment,2021,43(2):315-331. [25] KORZENIEWSKA E. Emission of bacteria and fungi in the air from wastewater treatment plants: a review[J]. Frontiers in Bioscience (Scholar Edition),2011,3:393-407. [26] KUO Y M, WANG C S. Droplet fractionation of hexavalent chromium from bubbles bursting at liquid surfaces of chromic acid solutions[J]. Journal of Aerosol Science,2002,33(2):297-306. doi: 10.1016/S0021-8502(01)00169-0 [27] RESCH F, AFETI G. Submicron film drop production by bubbles in seawater[J]. Journal of Geophysical Research: Oceans,1992,97(C3):3679-3683. doi: 10.1029/91JC02961 [28] LI L, GAO M, LIU J X. Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process[J]. Process Biochemistry,2011,46(4):910-915. doi: 10.1016/j.procbio.2010.12.016 [29] NIAZI S, HASSANVAND M S, MAHVI A H, et al. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East[J]. Environmental Science and Pollution Research,2015,22(20):16014-16021. doi: 10.1007/s11356-015-4793-z [30] UHRBRAND K, SCHULTZ A C, KOIVISTO A J, et al. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant[J]. Water Research,2017,112:110-119. doi: 10.1016/j.watres.2017.01.046 [31] SÁNCHEZ-MONEDERO M A, AGUILAR M I, FENOLL R, et al. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants[J]. Water Research,2008,42(14):3739-3744. doi: 10.1016/j.watres.2008.06.028 [32] WANG Y J, LI L, HAN Y P, et al. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions[J]. Ecotoxicology and Environmental Safety,2018,154:162-170. doi: 10.1016/j.ecoenv.2018.02.041 [33] LI Y P, QIU X H, LI M L, et al. Concentration and size distribution of airborne actinomycetes in a municipal wastewater treatment plant[J]. Polish Journal of Environmental Studies,2012,21(5):1305-1311. [34] FATHI S, HAJIZADEH Y, NIKAEEN M, et al. Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process[J]. Aerobiologia,2017,33(4):507-515. doi: 10.1007/s10453-017-9486-2 [35] PASCUAL L, PÉREZ-LUZ S, YÁÑEZ M A, et al. Bioaerosol emission from wastewater treatment plants[J]. Aerobiologia,2003,19(3/4):261-270. doi: 10.1023/B:AERO.0000006598.45757.7f [36] MILLNER P D, BASSETT D A, MARSH P B. Dispersal of Aspergillus fumigatus from sewage sludge compost piles subjected to mechanical agitation in open air[J]. Applied and Environmental Microbiology,1980,39(5):1000-1009. doi: 10.1128/aem.39.5.1000-1009.1980 [37] TAHA M P M, DREW G H, TAMER A, et al. Improving bioaerosol exposure assessments of composting facilities: comparative modelling of emissions from different compost ages and processing activities[J]. Atmospheric Environment,2007,41(21):4504-4519. doi: 10.1016/j.atmosenv.2006.12.056 [38] WEI Z Y, LIU Y Y, FENG K, et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants[J]. Science of the Total Environment,2018,628/629:969-978. doi: 10.1016/j.scitotenv.2018.02.003 [39] PINKERTON J N, JOHNSON K B, STONE J K, et al. Factors affecting the release of ascospores of Anisogramma anomala[J]. Phytopathology,1998,88(2):122-128. doi: 10.1094/PHYTO.1998.88.2.122 [40] FUZZI S, DECESARI S, FACCHINI M C, et al. Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season[J]. Journal of Geophysical Research Atmospheres,2007,112(D1):D01201. [41] LI M, YU X W, KANG H, et al. Concentrations and size distributions of bacteria-containing particles over oceans from China to the Arctic Ocean[J]. Atmosphere,2017,8(12):82. doi: 10.3390/atmos8050082 [42] GONG S L, BARRIE L A, BLANCHET J P. Modeling sea-salt aerosols in the atmosphere:1. model development[J]. Journal of Geophysical Research:Atmospheres,1997,102(D3):3805-3818. doi: 10.1029/96JD02953 [43] BLANCHARD D C, SYZDEK L D. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles[J]. Applied and Environmental Microbiology,1982,43(5):1001-1005. doi: 10.1128/aem.43.5.1001-1005.1982 [44] 许光素. 城市污水处理厂微生物气溶胶特征研究[D]. 北京: 中国科学院生态环境研究中心, 2017. [45] HAN Y P, WANG Y J, LI L, et al. Bacterial population and chemicals in bioaerosols from indoor environment: sludge dewatering houses in nine municipal wastewater treatment plants[J]. Science of the Total Environment,2018,618:469-478. doi: 10.1016/j.scitotenv.2017.11.071 [46] KORZENIEWSKA E, FILIPKOWSKA Z, GOTKOWSKA-PACHTA A, et al. Bacteriological pollution of the atmospheric air at the municipal and dairy wastewater treatment plant area and in its surroundings[J]. Archives of Environmental Protection,2008,34(4):13-23. [47] DONG L J, QI J H, SHAO C C, et al. Concentration and size distribution of total airborne microbes in hazy and foggy weather[J]. Science of the Total Environment,2016,541:1011-1018. doi: 10.1016/j.scitotenv.2015.10.001 [48] DUEKER M E, O'MULLAN G D. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols[J]. Science of the Total Environment,2014,478:184-189. doi: 10.1016/j.scitotenv.2014.01.092 [49] LI L, HAN Y P, LIU J X. Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools[J]. Environmental Monitoring and Assessment,2013,185(1):603-613. doi: 10.1007/s10661-012-2578-0 [50] KIM K Y, KO H J, KIM D. Assessment of airborne microorganisms in a swine wastewater treatment plant[J]. Environmental Engineering Research,2012,17(4):211-216. doi: 10.4491/eer.2012.17.4.211 [51] OCHOWIAK M, MATUSZAK M. The effect of additional aeration of liquid on the atomization process for a pneumatic nebulizer[J]. European Journal of Pharmaceutical Sciences,2017,97:99-105. doi: 10.1016/j.ejps.2016.11.015 [52] WANG Y J, LI L, XIONG R, et al. Effects of aeration on microbes and intestinal bacteria in bioaerosols from the BRT of an indoor wastewater treatment facility[J]. Science of the Total Environment,2019,648:1453-1461. doi: 10.1016/j.scitotenv.2018.08.244 [53] HUNG H F, KUO Y M, CHIEN C C, et al. Use of floating balls for reducing bacterial aerosol emissions from aeration in wastewater treatment processes[J]. Journal of Hazardous Materials,2010,175(1/2/3):866-871. [54] LAITINEN S, KANGAS J, HUSMAN K, et al. Evaluation of exposure to airborne bacterial endotoxins and peptidoglycans in selected work environments[J]. Annals of Agricultural and Environmental Medicine,2001,8(2):213-219. [55] 赵丽多, 任丽红, 李军等.云南省芒市春季PM2.5水溶性离子特征及来源分析[J]. 环境工程技术学报,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073ZHAO L D, REN L H, LI J, et al. Characteristics and source analysis of water-soluble ions of PM2.5 during spring in Mang City,Yunnan Province[J]. Journal of Environmental Engineering Technology,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073 [56] HEALY M G, FENTON O, CORMICAN M, et al. Antimicrobial compounds (triclosan and triclocarban) in sewage sludges, and their presence in runoff following land application[J]. Ecotoxicology and Environmental Safety,2017,142:448-453. doi: 10.1016/j.ecoenv.2017.04.046 [57] 路瑞, 李婉欣, 宋颖, 等.西安市不同天气下可培养微生物气溶胶浓度变化特征[J]. 环境科学研究,2017,30(7):1012-1019.LU R, LI W X, SONG Y, et al. Characteristics of culturable bioaerosols in various weather in Xi'an City, China[J]. Research of Environmental Sciences,2017,30(7):1012-1019. [58] ZHAI Y B, LI X, WANG T F, et al. A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors[J]. Environment International,2018,113:74-90. doi: 10.1016/j.envint.2018.01.007 [59] AARNINK A J A, HOEKSMA P. Effects of temperature and relative humidity on the survival of airborne bacteria[C]//ⅩⅤⅡ International Congress on Animal Hygiene, 2015:121. [60] KNUDSEN S M, GUNNARSEN L, MADSEN A M. Airborne fungal species associated with mouldy and non-mouldy buildings: effects of air change rates, humidity, and air velocity[J]. Building and Environment,2017,122:161-170. doi: 10.1016/j.buildenv.2017.06.017 [61] TONG Y Y, LIGHTHART B. Effect of simulated solar radiation on mixed outdoor atmospheric bacterial populations[J]. FEMS Microbiology Ecology,1998,26(4):311-316. doi: 10.1111/j.1574-6941.1998.tb00515.x [62] XIE Z S, FAN C L, LU R, et al. Characteristics of ambient bioaerosols during haze episodes in China: a review[J]. Environmental Pollution,2018,243:1930-1942. doi: 10.1016/j.envpol.2018.09.051 [63] 周俊. 反硝化除磷颗粒污泥反应器快速启动及其功能菌群作用机制研究[D]. 武汉: 武汉大学, 2016. [64] ZHONG X, QI J H, LI H T, et al. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region[J]. Atmospheric Environment,2016,140:506-513. doi: 10.1016/j.atmosenv.2016.06.034 [65] SAVAGE D, BARBETTI M J, MACLEOD W J, et al. Mobile traps are better than stationary traps for surveillance of airborne fungal spores[J]. Crop Protection,2012,36:23-30. doi: 10.1016/j.cropro.2012.01.015 [66] FERNANDO N L, FEDORAK P M. Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms[J]. Water Research,2005,39(19):4597-4608. ⊗ doi: 10.1016/j.watres.2005.08.010
计量
- 文章访问数: 490
- HTML全文浏览量: 228
- PDF下载量: 52
- 被引次数: 0