留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北干旱区流域水污染特征与控制策略

马玉珅 朱翔 彭福全 庞晴晴 倪利晓 杜鹏

马玉珅,朱翔,彭福全,等.西北干旱区流域水污染特征与控制策略:以宁夏清水河流域为例[J].环境工程技术学报,2022,12(5):1369-1377 doi: 10.12153/j.issn.1674-991X.20210323
引用本文: 马玉珅,朱翔,彭福全,等.西北干旱区流域水污染特征与控制策略:以宁夏清水河流域为例[J].环境工程技术学报,2022,12(5):1369-1377 doi: 10.12153/j.issn.1674-991X.20210323
MA Y S,ZHU X,PENG F Q,et al.Water pollution characteristics and control strategies in arid areas of Northwest China: a case study of Qingshui River Basin in Ningxia[J].Journal of Environmental Engineering Technology,2022,12(5):1369-1377 doi: 10.12153/j.issn.1674-991X.20210323
Citation: MA Y S,ZHU X,PENG F Q,et al.Water pollution characteristics and control strategies in arid areas of Northwest China: a case study of Qingshui River Basin in Ningxia[J].Journal of Environmental Engineering Technology,2022,12(5):1369-1377 doi: 10.12153/j.issn.1674-991X.20210323

西北干旱区流域水污染特征与控制策略—以宁夏清水河流域为例

doi: 10.12153/j.issn.1674-991X.20210323
基金项目: 生态环境部南京环境科学研究所创新团队项目(GYZX200101);国家水体污染控制与治理科技重大专项(2018ZX07208-006-004);宁夏回族自治区重点研发项目(2019BFG02028);国家自然科学基金面上项目(51778265)
详细信息
    作者简介:

    马玉珅(1997—),男,硕士研究生,研究方向为水体污染控制与生态修复,201605010017@hhu.edu.cn

    通讯作者:

    杜鹏(1979—),男,研究员,博士,主要研究方向为流域水污染控制与生态保护管理,pengkong829@126.com

  • 中图分类号: X522

Water pollution characteristics and control strategies in arid areas of Northwest China: a case study of Qingshui River Basin in Ningxia

  • 摘要:

    以宁夏境内黄河最大的一级支流清水河流域为例,分析重点断面水质、水环境容量及各控制单元污染负荷特征,并提出有针对性的污染控制策略。结果表明:2015—2018年清水河三营国控断面水质无法稳定达到GB 3838—2002《地表水环境质量标准》Ⅳ类水质标准,泉眼山断面化学需氧量(COD)存在超Ⅳ类水质标准风险。流域水环境容量COD为592.83~1 238.25 t/a,氨氮为51.99~193.60 t/a,总磷(TP)为5.02~12.85 t/a;流域平水期污染负荷入河量COD为15 661.1 t/a,氨氮为1 670.2 t/a,TP为784.5 t/a,分别是平水期水环境容量(COD为940.57 t/a,氨氮为114.64 t/a,TP为8.81 t/a)的16、14和89倍。固原控制单元单位面积污染负荷入河量最高(COD为3.04 t/a,氨氮为0.22 t/a,TP为0.06 t/a),工业源与城镇生活源污染问题突出,中卫控制单元总污染负荷入河量最高(COD为 6 738.45 t/a,氨氮为868.88 t/a,TP为218.12 t/a),城镇生活源污染较严重,而吴忠控制单元禽畜养殖污染较严重。基于水质目标和各单元的污染特征,建议固原控制单元加强工业企业污水回收利用、提高城镇污水处理能力,中卫控制单元重点关注污水收集处理设施建设与改造升级,吴忠控制单元在规模化养殖场推行禽畜粪污集中处理与回用。

     

  • 图  1  清水河流域概况、断面与控制单元分布

    Figure  1.  General situation and section and control unit distribution of Qingshui River basin

    图  2  2015—2018年三营与泉眼山国控断面水质变化

    注:水质标准为GB 3838—2002。

    Figure  2.  Water quality changes in Sanying and Quanyanshan national control sections from 2015 to 2018

    表  1  各控制单元人均污染物排放量

    Table  1.   Per capita pollutant discharges of each control unit g/(人· d) 

    控制单元COD排放量氨氮排放量TP排放量
    吴忠657.640.73
    中卫657.480.73
    固原607.690.64
    下载: 导出CSV

    表  2  清水河流域不同水期水环境容量

    Table  2.   Water environmental capacity of Qingshui River Basin in different water periods t/a 

    水期COD氨氮TP
    丰水期1 238.25193.6012.85
    平水期940.57114.648.81
    枯水期774.7782.326.90
    特枯水期592.8351.995.02
    下载: 导出CSV

    表  3  固原控制单元污染负荷排放量与入河量

    Table  3.   Pollution load discharge and river inflow of Guyuan control unit t/a 

    污染负荷来源排放量入河量
    COD氨氮TPCOD氨氮TP
    城镇生活源4 458.84555.8747.56647.88103.666.48
    农村生活源4 947.21616.7552.771 298.64161.9013.86
    工业源4 129.0022.0002 890.3015.400
    农业源禽畜养殖12 660.001327.00924.001 266.00133.0092.00
    标准农田1 068.00213.0080.00213.0043.0016.00
    水产养殖15.00003.0000
    合计27 278.052 734.621 104.336 318.82456.96128.34
    下载: 导出CSV

    表  4  中卫控制单元污染负荷排放量与入河量

    Table  4.   Pollution load discharge and river inflow of Zhongwei control unit t/a 

    污染负荷来源排放量入河量
    COD氨氮TPCOD氨氮TP
    城镇生活源3 072.57393.8037.382 136.35274.6825.93
    农村生活源10 067.431 290.31122.492642.70338.7032.15
    工业源532.0095.000.06372.4066.500.04
    农业源禽畜养殖11 713.001 243.001 323.001 171.00124.00133.00
    标准农田1 519.00304.00113.00304.0061.0023.00
    水产养殖555.0019.0017.00112.004.004.00
    合计27 459.003 345.111 612.936 738.45868.88218.12
    下载: 导出CSV

    表  5  吴忠控制单元污染负荷排放量与入河量

    Table  5.   Pollution load discharge and river inflow of Wuzhong control unit t/a 

    污染负荷来源排放量入河量
    COD氨氮TPCOD氨氮TP
    城镇生活源2 371.77302.0128.8628.8633.002.06
    农村生活源5 803.50738.9870.6270.61193.9818.54
    工业源12.002.0008.401.400
    农业源禽畜养殖6 761.00777.00945.00945.0078.0094.00
    标准农田951.00190.0072.0072.0038.0014.00
    水产养殖000000
    合计15 899.272 009.991 116.471 124.87344.38128.60
    下载: 导出CSV

    表  6  各控制单元单位面积污染负荷排放量与入河量

    Table  6.   Pollution load discharge and river inflow per unit area of each control section t/km2 

    控制单元单位面积污染负荷排放量单位面积污染负荷入河量
    COD氨氮TPCOD氨氮TP
    固原13.141.320.533.040.220.06
    中卫3.600.440.210.880.110.03
    吴忠5.330.670.370.870.110.04
    下载: 导出CSV

    表  7  各控制单元水污染负荷应削减量

    Table  7.   Required water pollution load reduction amount in each control section t/a 

    控制单元COD氨氮TP
    固原6 165.51438.27126.90
    中卫6 173.15799.98212.83
    吴忠902.90317.33126.52
    下载: 导出CSV
  • [1] JIANG Y, LIU C M, HAO S N, et al. A framework to develop a watershed pollution load model for semiarid and semihumid areas[J]. Journal of Hydrology,2019,579:124179. doi: 10.1016/j.jhydrol.2019.124179
    [2] 邱小琮, 王德全, 尹娟, 等.宁夏农业面源污染及其影响因子解析[J]. 水土保持学报,2012,26(5):190-194.

    QIU X C, WANG D Q, YIN J, et al. Analysis of agriculture non-point source pollution and its influence factors in Ningxia[J]. Journal of Soil and Water Conservation,2012,26(5):190-194.
    [3] CAREY R O, HOCHMUTH G J, MARTINEZ C J, et al. Evaluating nutrient impacts in urban watersheds: challenges and research opportunities[J]. Environmental Pollution,2013,173:138-149. doi: 10.1016/j.envpol.2012.10.004
    [4] YAN R H, GAO Y N, LI L L, et al. Estimation of water environmental capacity and pollution load reduction for urban lakeside of Lake Taihu, Eastern China[J]. Ecological Engineering,2019,139:105587. doi: 10.1016/j.ecoleng.2019.105587
    [5] de PAULA FILHO F J, de SÁ SAMPAIO A D, MENEZES J M C, et al. Land uses, nitrogen and phosphorus estimated fluxes in a Brazilian semi-arid watershed[J]. Journal of Arid Environments,2019,163:41-49. doi: 10.1016/j.jaridenv.2019.01.001
    [6] TRANG C T T, THANH T, THANH T D, et al. Assessment of the environmental carrying capacity of pollutants in Tam Giang-Cau Hai Lagoon (Viet Nam) and solutions for the environment protection of the lagoon[J]. Science of the Total Environment,2021,762:143130. doi: 10.1016/j.scitotenv.2020.143130
    [7] WANG Y M, ZHOU X D, ENGEL B. Water environment carrying capacity in Bosten Lake Basin[J]. Journal of Cleaner Production,2018,199:574-583. doi: 10.1016/j.jclepro.2018.07.202
    [8] 王金南. 黄河流域生态保护和高质量发展战略思考[J]. 环境保护, 2020, 48(增刊1): 18-21.

    WANG J N. A primary framework on protection of ecological environment and realization of high-quality development for the Yellow River Basin[J]. Environmental Protection, 2020, 48(Suppl 1): 18-21.
    [9] ZHU Y C, WANG L J, ZHAO X Y, et al. Accumulation and potential sources of heavy metals in soils of the Hetao area, Inner Mongolia, China[J]. Pedosphere,2020,30(2):244-252. doi: 10.1016/S1002-0160(17)60306-0
    [10] CHEN J, QIAN H, GAO Y Y, et al. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions[J]. Journal of Hydrology,2020,581:124386. doi: 10.1016/j.jhydrol.2019.124386
    [11] 闵继胜, 孔祥智.我国农业面源污染问题的研究进展[J]. 华中农业大学学报(社会科学版),2016(2):59-66.

    MIN J S, KONG X Z. Research development of agricultural non-point source pollution in China[J]. Journal of Huazhong Agricultural University (Social Sciences Edition),2016(2):59-66.
    [12] ZHANG Y, LIU W X, CAI Y, et al. Decoupling analysis of water use and economic development in arid region of China: based on quantity and quality of water use[J]. Science of the Total Environment,2021,761:143275. doi: 10.1016/j.scitotenv.2020.143275
    [13] 和志国, 张华, 暴路敏, 等.宁夏清水河流域生态水量确定及保障措施浅析[J]. 中国水利,2019(3):25-27. doi: 10.3969/j.issn.1000-1123.2019.03.012

    HE Z G, ZHANG H, BAO L M, et al. Analysis on ecological water flow in the Qingshuihe River Basin of Ningxia and safeguarding measures[J]. China Water Resources,2019(3):25-27. doi: 10.3969/j.issn.1000-1123.2019.03.012
    [14] CHEN D J, HU M P, GUO Y, et al. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in Eastern China, 1980-2010[J]. Science of the Total Environment,2015,533:196-204. doi: 10.1016/j.scitotenv.2015.06.079
    [15] CHEN Y P, FU B J, ZHAO Y, et al. Sustainable development in the Yellow River Basin: issues and strategies[J]. Journal of Cleaner Production,2020,263:121223. doi: 10.1016/j.jclepro.2020.121223
    [16] 李颖曼, 焦鹏, 张晓华, 等.宁夏清水河流域近60年降水量及入黄沙量变化[J]. 水土保持研究,2021,28(2):184-189.

    LI Y M, JIAO P, ZHANG X H, et al. Change of precipitation and sediment of Qingshui River Basin of Ningxia in recent 60 years[J]. Research of Soil and Water Conservation,2021,28(2):184-189.
    [17] 陈世贵.宁夏山区水库污染水体生态修复研究[J]. 人民黄河,2020,42(12):66-69. doi: 10.3969/j.issn.1000-1379.2020.12.013

    CHEN S G. Study on ecological restoration of polluted water in reservoirs in Ningxia mountainous areas[J]. Yellow River,2020,42(12):66-69. doi: 10.3969/j.issn.1000-1379.2020.12.013
    [18] 张秀菊, 王宝斌, 徐小溪, 等.动态水环境容量研究: 以潇河流域为例[J]. 中国农村水利水电,2022(2):20-26.

    ZHANG X J, WANG B B, XU X X, et al. Research on dynamic water environment capacity: taking Xiaohe River Basin as an example[J]. China Rural Water and Hydropower,2022(2):20-26.
    [19] 云飞, 李燕, 杨建宁, 等.黄河宁夏段COD及氨氮污染动态分布模拟探讨[J]. 宁夏大学学报(自然科学版),2005,26(3):283-286.

    YUN F, LI Y, YANG J N, et al. Investigation on simulation of dynamic distribution of COD and ammonia-nitrogen pollution in Ningxia segment of the Yellow River[J]. Journal of Ningxia University (Natural Science Edition),2005,26(3):283-286.
    [20] 韩宇平, 阮本清, 蒋任飞, 等.黄河宁夏段水环境容量计算与分析[J]. 黄河水利职业技术学院学报,2006,18(3):1-3. doi: 10.3969/j.issn.1008-486X.2006.03.001

    HAN Y P, RUAN B Q, JIANG R F, et al. Calculation and analysis of the water environmental capacity of the Ningxia section of Yellow River[J]. Journal of Yellow River Conservancy Technical Institute,2006,18(3):1-3. doi: 10.3969/j.issn.1008-486X.2006.03.001
    [21] 第一次全国污染源普查资料编纂委员会. 污染源普查产排污系数手册(上)[M]. 北京: 中国环境科学出版社, 2011.
    [22] 姚玉璧, 肖国举, 王润元, 等.近50年来西北半干旱区气候变化特征[J]. 干旱区地理,2009,32(2):159-165.

    YAO Y B, XIAO G J, WANG R Y, et al. Climatic changes of semi-arid region over the northwest China in recent 50 a[J]. Arid Land Geography,2009,32(2):159-165.
    [23] 王世强, 赵增锋, 邱小琮, 等.清水河干流水质空间分布特征及季节性变化[J]. 西南农业学报,2021,34(2):386-391.

    WANG S Q, ZHAO Z F, QIU X C, et al. Spatial-temporal characteristics of water environmental quality in mainstream of Qingshui River[J]. Southwest China Journal of Agricultural Sciences,2021,34(2):386-391.
    [24] 何立霞, 张玉玲, 贾晓宇, 等.干旱地区水环境容量的研究: 以张家口市境内永定河为例[J]. 草业科学,2020,37(7):1368-1375. doi: 10.11829/j.issn.1001-0629.2020-0236

    HE L X, ZHANG Y L, JIA X Y, et al. Water environment capacity in arid area: a case study of the Yongding River in Zhangjiakou City[J]. Pratacultural Science,2020,37(7):1368-1375. doi: 10.11829/j.issn.1001-0629.2020-0236
    [25] 门宝辉, 牛晓赟, 刘灿均, 等.滦河承德段水环境容量计算及初始分配[J]. 水资源保护,2022(2):168-175.

    MEN B H, NIU X Y, LIU C J, et al. Calculation and initial allocation of water environmental capacity in Chengde section of Luanhe River[J]. Water Resources Protection,2022(2):168-175.
    [26] 苏新礼.宁夏清水河流域干旱演变特征分析[J]. 宁夏农林科技,2011,52(12):266-268.

    SU X L. Analysis of evolution characteristics of dry in Qingshui River region[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2011,52(12):266-268.
    [27] 艾成, 丁环.宁夏清水河流域水文特性分析[J]. 宁夏农林科技,2010,51(3):71-72. doi: 10.3969/j.issn.1002-204X.2010.03.038
    [28] WU Y H, LIU J Z, SHEN R F, et al. Mitigation of nonpoint source pollution in rural areas: from control to synergies of multi ecosystem services[J]. Science of the Total Environment,2017,607/608:1376-1380. doi: 10.1016/j.scitotenv.2017.07.105
    [29] 张爱平.宁夏引黄灌区农业非点源污染评价[J]. 生态学杂志,2013,32(1):156-163.

    ZHANG A P. An assessment of agricultural non-point source pollution in Ningxia irrigation region, Northwest China[J]. Chinese Journal of Ecology,2013,32(1):156-163. ◇
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  247
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13

目录

    /

    返回文章
    返回